Blockchains as Infrastructure and Semicommons

A. Jason Windawi James Grimmelmann

William and Mary Law Review Cryptocurrency Symposium

February 11, 2022

Infrastructure

Infrastructure

- Brett Frischmann's definition of *infrastructure*:
 - *nonrival*: "may be consumed nonrivalrously for some appreciable range of demand"
 - *input*: "[demand] is driven primarily by downstream productive activities that require the resource as an input"
 - generic: "may be used as an input into a wide range of goods and services, which may include private goods, public goods, and social goods"
- Examples: roads, telecommunications networks, the natural environment, ideas, and languages

Ledgers are infrastructure

The dilemma of infrastructure

- Downstream uses create positive spillovers that have social benefit exceeding their private value to the user
 - Network effects benefit other users
 - Public goods benefit *everyone*
- Thus, users will not and cannot pay for all the value they create
 - Treating infrastructure as a private good, with a price based on willingness to pay, causes overpricing and underuse
- Frischmann's solution: *commons management*, in which the infrastructure is shared among users on nondiscriminatory terms

Ledgers as commons

Blockchains as commons

- A (public) blockchain is a commons in this sense
 - No restrictions on who can record or read transactions
 - Transaction fees are nondiscriminatory
- Three related resources:
 - The *ledger itself*: infrastructure managed as a commons
 - The *information on the ledger:* pure (common) information goods
 - The assets tracked on the ledger: private goods, because cryptographic signatures prevent unauthorized transactions

Ledgers as commons

Centralization

- Commons governance of infrastructure faces two challenges:
 - Demand-side: preventing *congestion* due to overuse
 - Supply-side: creating incentives for resource *provision*
- Traditional solutions: direct public provisioning (e.g. roads) or public utility regulation (e.g. telephone network)
 - Free (local roads) or regulated (telephone) pricing
- Publicly provisioned ledgers include land and IP records
 - The ledger database itself is not especially costly

Centralized ledger

The downside of centralization

- But centralization has its own serious problems
 - A centralized administrator can discriminate among users
 - Or manipulate the resource corruptly for their own benefit
 - A ledger administrator could *lie* about the ledger's contents

Corruption

Decentralization

- This is the impetus for *distributed* ledger technology
- I.e., numerous participants collectively maintain the ledger
- Each of them contributes its own (private) hardware and effort

Distributed ledger

Semicommons

New solutions, new problems

- Decentralization raises its own new challenges:
 - *Incentives*: Why should a participant contribute its resources?
 - Governance: What if participants disagree?
- Building a sustainable commons on top of privately-contributed resources is a hard problem
 - But it turns out that it's a problem that's been solved before!

Semicommons

- In the medieval "open-field" system ...
 - ... farmers worked individual strips of land privately
 - ... but livestock were grazed on the whole field in common
- Henry Smith's definition of a *semicommons*:
 - Privately owned with respect to some substantial uses
 - Held in common with respect to other substantial uses
 - Private and common uses substantially affect each other

Semicommons challenges

- At first, semicommons look strictly worse than pure commons
 - You still have the challenges of overuse (by common users) and underprovisioning (by private users)
- But you also now have the challenge of targeting by common users who choose which private users their use affects
 - Shepherd picks where the sheep trample (bad) or poop (good)
- And even functioning semicommons are vulnerable to changes in prices or production technology
 - Landlords ultimately enclosed the open-field semicommons

Why a semicommons?

- The semicommons form is valuable when the gains from participating in the common use outweigh all these costs
 - E.g., wool + manure > trampling
 - E.g., games + shopping + memes > price of a computer
- The question is whether and how these costs can be kept sufficiently small that it's > and not <

Semicommons mechanisms

- Compensation (explicit or implicit) to reward private users for participating in provisioning the common uses
- Boundary-setting so that private users can defend themselves against targeted overuse and abuse
- Scattering so that commons users cannot target the costs and benefits of their uses to particular private users
- **Governance** institutions to resolve disputes and adjust in light of experience in a way that is acceptable to participants

Mining rewards

The blockchain balance

- Transaction fees (+mining rewards) create necessary incentives:
 - They give miners an incentive to provide (private) resources
 - They limit (common) congestion/overuse by pricing access
 - They are nondiscriminatory
- Proof-of-work block rewards are a form of scattering
 - They divide the benefits of the common use among private users in proportion to the computational resources those users contribute
 - Note the tight link between the private assets on top of the common ledger and the private resources that maintain it

Consensus as governance

- The longest-chain convention establishes consensus
 - It gives participants a strong incentive to agree with each other
 - Dissenting about the state of the ledger means losing your onchain assets, because no one else will accept them from you
- This is a governance institution!

Complications

Protocols and software

- A blockchain's *protocol* and *software* are both public goods
 - They are pure commons, so there is no risk of overuse
 - (Indeed, they are typically open-sourced to induce greater adoption)
 - But as pure information, they are at risk being underprovided
- Common solution: add private incentives
 - A new blockchain's developers reserve some on-chain assets for themselves, or for the investors who fund the development (e.g., ICOs)
 - This creates its own governance issues, so it's also common for a foundation to steward these assets and coordinate development for the benefit of the blockchain community

It's turtles all the way up, too

- On-chain assets (e.g. smart contracts) can be infrastructure, too!
- These raise very similar provisioning and governance issues
 - E.g., who pays for the coding and debugging?
 - E.g., should the code be free for reuse by competitors?
 - E.g., can participants trust the creators?
- Note the reuse of familiar consensus mechanisms here

Resource consumption

- Subtle but massive inefficiency in proof-of-work consensus
 - *Miners* will enter until the expected net reward drops to zero
 - But if users highly value the ledger, fees and rewards are high
 - Result: immense inefficient *over*-provisioning of redundancy
 - With catastrophic environmental consequences
- Problem: *some* redundancy is essential to trustworthiness
 - Thus, lots of work on developing proof-of-stake mechanisms (Who does this work? See the previous slide.)

Tyranny of the majority

- 51% attack: a majority of compute power hijacks a blockchain
 - The game theory here gets very complicated very quickly
 - And so does the political maneuvering
- Why? The protocol's anti-targeting guarantees break down!
 - *Cf.* miner-extractable-value attacks (e.g. front-running)
- This is a governance problem that no protocol can fully resolve
 - A different consensus mechanism (e.g. proof of stake) creates its own opportunities for strategic behavior

Consensus breakdown

- Blockchain protocols aren't natural laws of the universe
 - A nation can always scrap its constitution and write a new one
 - A blockchain community can always modify its protocol
- Thus, the longest-chain consensus is not inviolate
 - Sometimes an influential participant intervenes (e.g. Vitalik after the DAO hack, or OpenSea after ape thefts)
 - Sometimes the community collectively decides
 - A few truly contentious disputes lead to forks

Inherent instability

- No large software project is ever finished or free of bugs
- Using tokens as incentives creates complex reward systems that depend on social behavior and have massive price volatility
- Constant technological change means that incentives, threats, and design alternatives are always shifting
- Collective community governance decisions...
 - ... are routine, not exceptions
 - ... are a feature, not a bug
 - ... make blockchains work

Conclusion

You can't hide from governance

- Blockchains are a new way of providing ledger infrastructure
 - Decentralization avoids some familiar corruption problems
 - And semicommons mechanisms address some familiar incentive problems of decentralization
- But they have governance and incentive problems of their own
 - The temptation is to add more epicycles to the protocol: new staking mechanisms, new abuse mitigations, etc.
 - But no protocol can solve all governance problems for all time

The moral

- There is something new, interesting, and possibly useful here
 - Blockchains aren't just scams, hype, and carbon emissions
- But most descriptions of blockchains cannot be taken at face value
 - Blockchains are technosocial systems, not just technologies
 - On-chain stability is possible only because participants engage in extensive off-chain governance work
- Pay attention to actual blockchain governance mechanisms
 - Not just the ones formally instantiated in protocols and code

Discussion