
Software Interpretation  
for Lawyers
James Grimmelmann

March 6, 2019

In this talk

• Draw out the similarities and differences in:

• … how legal actors interpret legal texts

• … how computers interpret programs

• Motivating example: unauthorized access

Motivation

Compare:

“You are not allowed to access any files
in the /private/ directory.”

User-agent: * 
Disallow: /private/

Compare:

“You are not alloqed to access any files
in the /private/ directory.”

User-agent: * 
Disalloq: /private/

Intuition

• In a natural-language legal text, a typo like “alloqed”
for “allowed” would typically be trivially ignored

• In a formal-language program, a typo like Disalloq
for Disallow poses a harder question:

• Correct it to Disallow, like a human would?

• Or leave it as Disalloq, like a computer would?

• Goal: a framework for thinking about such questions

Legal speech acts

Software with legal effects

• Software can convey permission (to use it)

• Obvious analogies: statutes, licenses, etc.

• These have their own legal interpretive rules

• What are the interpretive rules for software?

Legal speech acts

• “Be it hereby enacted that …” is a speech act

• It has the illocutionary force of changing the law (and
possibly also of commanding subjects to comply and
officials to act.)

• Other legal speech acts: contracts, wills, ToS, etc.

• They have their own illocutionary forces

• Their felicity conditions are that (1) the speaker must have
appropriate authority, and (2) the speaker must follow
the correct formalities

Interpretation and
construction

• It is helpful to divide legal interpretation into:

• Interpretation — the process of determining the
linguistic meaning of the text

• Construction — the process of determining the
legal effect, given the linguistic meaning

• Both are complex processes. Interpretation can
eliminate some linguistic ambiguity, and
construction must clean up the rest

legal  
text

linguistic 
meaning

legal 
effect

interpretation construction

“not
alloqed”

not  
allowed /private/

interpretation construction

Software speech acts

Software speech acts

• print(2+2) is also a kind of speech act

• When uttered to a Python interpreter, it causes
the computer to display 4

• We could talk about this mechanistically, deny
that the computer understands anything, and
deny that communication is taking place

• But this overlooks the ways in which
print(2+2) is linguistically meaningful

Examples

• E.g., Bernstein v. DoJ: software can be First-
Amendment-covered speech

• E.g., Computer Associates v. Altai: software can be
copyrightable

• Neither of these cases is intelligible if software is
inherently only a functional artifact

• For better or for worse, we program computers
with words that have meaning to humanns

program  
text

functional 
effect

interpretation

Disalloq /private/
interpretation

Program meaning

Who is the interpreter?

• Legal texts are addressed to people: citizens,
counterparties, guests, and especially judges

• They mean what they mean to people

• Programs are addressed to computers: they
consists of a series of commands to execute

• Do they mean (only) what they cause
computers to do?

Program meaning

• A family of theories that a program’s meaning is
determined by what it causes a computer to do

• A naïve version would look to to a specific physical
computer an actual execution at a specific time+place

• This is obviously insufficient, because it ignores
that actual computers can and do malfunction

• A more sophisticated version would look to an
idealized, abstracted, correctly functioning computer

Where does program
meaning come from?

• What does 2**2 mean in a programming language?

• Three answers:

• Use a program: a reference implementation whose
behavior is by stipulation treated as correct

• Use natural language: a specification that defines
the behavior of a correct implementation

• Use mathematics: a formal semantics that identifies
programs with abstract entities

More questions

• Where do specifications and semantics come from?

• Some people got together to define them

• What language are we running?

• “Python” 2.7 is different from “Python” 3.6

• print 2+2 is a valid program only in the former

• These questions can be answered only by reference
to a community of programmers and users

Program meaning =
extreme literal meaning

• Programming languages have determinate
syntax, semantics, and pragmatics:

• No internal ambiguity or vagueness

• No implicature

• No reference to the outside world

• Ambiguity is pushed upstream from the
program’s semantics into the language’s

Other meanings

But wait, there’s more!

• Programmers and users routinely act in ways
that show they consider program meaning
inadequate for their purposes

• E.g., the very idea of a “bug” presupposes that
program meaning might fail to reflect a
programmer’s communicative intent

• E.g., the CFAA would be incoherent if
program meaning determined authorization

Programmer meaning

• A family of theories that a program’s meaning is what a
programmer would believe the program is attempting to do

• Obviously comes in many variants corresponding to whose
perspective one adopts (e.g., author vs. reasonable
programmer) and what contextual information one looks to
(e.g. documentation)

• A reasonable programmer might understand that pint(2+2)
is a buggy program to print 4

• The communication to readers of the code succeeds, even if
the program itself fails to execute

Incidental meaning

• In Python, lines starting with # are ignored

• Programmers use comments to document
their work, for themselves and others

• Or to make jokes, etc.

• This is incidental meaning: it is independent of
what the program does

from itertools import repeat
for feet in [3,3,2,2,3]:
 print " ".join("DA-DA-DUM"
 for dummy in [None]
for foot in repeat("metric", feet))

DA-DA-DUM DA-DA-DUM DA-DA-DUM
DA-DA-DUM DA-DA-DUM DA-DA-DUM
DA-DA-DUM DA-DA-DUM
DA-DA-DUM DA-DA-DUM
DA-DA-DUM DA-DA-DUM DA-DA-DUM

 /*
 +
 +
 +
 +
 [>i>n[t
 */ #include<stdio.h>
 /*2w0,1m2,]_<n+a m+o>r>i>=>(['0n1'0)1;
 */int/**/main(int/**/n,char**m){FILE*p,*q;int A,k,a,r,i/*
 #uinndcelfu_dset<rsitcdti_oa.nhs>i/_*/;char*d="P%" "d\n%d\40%d"/**/
 "\n%d\n\00wb+",b[1024],y[]="yuriyurarararayuruyuri*daijiken**akkari~n**"
 "/y*u*k/riin<ty(uyr)g,aur,arr[a1r2a82*y2*/u*r{uyu}riOcyurhiyua**rrar+*arayra*="
 "yuruyurwiyuriyurara'rariayuruyuriyuriyu>rarararayuruy9uriyu3riyurar_aBrMaPrOaWy^?"
 "*]/f]`;hvroai<dp/f*i*s/<ii(f)a{tpguat<cahfaurh(+uf)a;f}vivn+tf/g*`*w/jmaa+i`ni("/**
 */"i+k[>+b+i>++b++>l[rb";int/**/u;for(i=0;i<101;i++)y[i*2]^="~hktrvg~dmG*eoa+%squ#l2"
 ":(wn\"1l))v?wM353{/Y;lgcGp`vedllwudvOK`cct~[|ju {stkjalor(stwvne\"gt\"yogYURUYURI"[
 i]^y[i*2+1]^4;/*!*/p=(n>1&&(m[1][0]-'-'||m[1][1] !='\0'))?fopen(m[1],y+298):stdin;
 /*y/riynrt~(^w^)],]c+h+a+r+*+*[n>)+{>f+o<r<(-m] =<2<5<64;}-]-(m+;yry[rm*])/[*
 /q=(n<3||!(m[2][0]-'-'||m[2][1]))?stdout /]{ }[*/:fopen(m[2],d+14);if(!p||/*
 "]<<*-]>y++>u>>+r >+u+++y>--u---r>++i+++" <)< ;[>-m-.>a-.-i.++n.>[(w)*/!q/**/)
 return+printf("Can " "not\x20open\40%s\40" "" "for\40%sing\n",m[!p?1:2],!p?/*
 o=82]5<<+(+3+1+&.(+ m +-+1.)<)<|<|.6>4>-+(> m- &-1.9-2-)-|-|.28>-w-?-m.:>([28+
 /"read":"writ");for (a=k=u= 0;y[u]; u=2 +u){y[k++]=y[u];}if((a=fread(b,1,1024/
,mY/R*Y"R*/,p/*U*/)/* R*/)>/*U{ */ 2&& b/*Y*/[0]/*U*/=='P' &&4==/*"y*r/y)r\}
/sscanf(b,d,&k,& A,& i, &r)&& ! (k-6&&k -5)&&r==255){u=A;if(n>3){/
]&<1<6<?<m.-+1>3> +:+ .1>3+++ . -m-) -;.u+=++.1<0< <; f<o<r<(.;<([m(=)/8*/
u++;i++;}fprintf (q, d,k, u >>1,i>>1,r);u = k-5?8:4;k=3;}else
 /*]>*/{(u)=/*{ p> >u >t>-]s >++(.yryr*/+(n+14>17)?8/4:8*5/
 4;}for(r=i=0 ; ;){u*=6;u+= (n>3?1:0);if (y[u]&01)fputc(/*
 <g-e<t.c>h.a r -(-).)8+<1. >;+i.(<)< <)+{+i.f>([180*/1*
 (r),q);if(y[u]&16)k=A;if (y[u]&2)k--;if(i/*
 ("^w^NAMORI; { I*/==a/*")*/){/**/i=a=(u)*11
 &255;if(1&&0>= (a= fread(b,1,1024,p))&&
 ")]i>(w)-;} { /i-f-(-m--M1-0.)<{"
 [8]==59/* */)break;i=0;}r=b[i++]
 ;u+=(/**>> *..</<<<)<[[;]**/+8&*
 (y+u))?(10- r?4:2):(y[u] &4)?(k?2:4):2;u=y[u/*
 49;7i\(w)/;} y}ru\=*ri[,mc]o;n}trientuu ren (
 */]-(int)'`';} fclose(p);k= +fclose(q);
 /*] <*.na/m*o{ri{ d;^w^;} }^_^}}
 " */ return k- -1+ /*\' '-`*/
 (-/*}/ */0x01); {;{ }}
 ; /*^w^*/ ;}

User meaning

• The Python program print('Hello!')
displays the text “Hello!” to the user

• The string 'Hello!' is arbitrary: Python just
prints a sequence of six characters

• The communicative meaning of “Hello!” as a
greeting comes from English, not Python

• This is user meaning: a further communicative act
that results from a program’s execution

A tentative diagram

program  
text

program 
meaning

programming 
language 
semantics

programmer 
meaning

incidental 
meaning

user 
meaning

comments &c.

execution

Law and software

How should courts
interpret software?

• Which theory of meaning is legally required in
a given context is a question of positive law

• Which theory yields the best results depends on
an underlying normative framework

• Computer science can tell lawyers how
programmers do their jobs, but it cannot tell
lawyers how to do their jobs

program  
text

functional 
effect

interpretation

legal  
text

linguistic 
meaning

legal 
effect

interpretation construction

Executable law?

program  
text

functional 
effect

interpretation

legal  
text

linguistic 
meaning

legal 
effect

interpretation construction

Reading software?

 Back to robots.txt

• The relevant legal question is whether the web host has
communicated the denial of permission — which
requires looking at the robots.txt denial through the eyes
of a reasonable web scraper, who would understand:

(1) Dialloq isn’t a valid keyword

(2) The standard is written for bots to process

• (2) means that the relevant community has selected into
program meaning i.e., (1) is not “corrected” to Disallow

Other directions

Thinking about  
legal interpretation

• Program meaning shows by contrast that the
debate over textualism may be overblown

• The difference between textualist and other
theories is far smaller than the difference
between any of them and program meaning

• Typos do not cause statutes to crash

Ideal interpreters

• Is the ideal of a judge another programmer who
helps the legislature test and debug its code?

• Or is the ideal of a judge a reliable computer
who correctly executes the legislature’s code?

Formalizing law

• Legal interpretation is messy because:

1. Natural language is messy

2. The world is messy

3. People are messy

• Writing legal texts in software can help with (1) but
not with (2), and therefore can’t fully solve (3)

• Any computer system capable of interpreting natural-
language texts or doing fact-finding will also be messy

On debugging

• Program analysis and testing are essential to
modern software development

• They enable programmers to learn about what a
program they wrote does before releasing it

• (Cf., the Constitution forbids the federal courts
from issuing pre-release “advisory” opinions)

• Can these software development techniques be
pulled back into law?

Questions?

