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In this talk

• Draw out the similarities and differences in: 

• … how legal actors interpret legal texts  

• … how computers interpret programs 

• Motivating example: unauthorized access



Motivation



Compare:

“You are not allowed to access any files 
in the /private/ directory.” 

User-agent: * 
Disallow: /private/



Compare:

“You are not alloqed to access any files 
in the /private/ directory.” 

User-agent: * 
Disalloq: /private/



Intuition

• In a natural-language legal text, a typo like “alloqed” 
for “allowed” would typically be trivially ignored 

• In a formal-language program, a typo like Disalloq 
for Disallow poses a harder question: 

• Correct it to Disallow, like a human would? 

• Or leave it as Disalloq, like a computer would? 

• Goal: a framework for thinking about such questions



Legal speech acts



Software with legal effects

• Software can convey permission (to use it) 

• Obvious analogies: statutes, licenses, etc. 

• These have their own legal interpretive rules 

• What are the interpretive rules for software?



Legal speech acts

• “Be it hereby enacted that …” is a speech act 

• It has the illocutionary force of changing the law (and 
possibly also of commanding subjects to comply and 
officials to act.) 

• Other legal speech acts: contracts, wills, ToS, etc. 

• They have their own illocutionary forces 

• Their felicity conditions are that (1) the speaker must have 
appropriate authority, and (2) the speaker must follow 
the correct formalities



Interpretation and 
construction

• It is helpful to divide legal interpretation into: 

• Interpretation — the process of determining the 
linguistic meaning of the text 

• Construction — the process of determining the 
legal effect, given the linguistic meaning 

• Both are complex processes. Interpretation can 
eliminate some linguistic ambiguity, and 
construction must clean up the rest
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Software speech acts



Software speech acts

• print(2+2) is also a kind of speech act 

• When uttered to a Python interpreter, it causes 
the computer to display 4 

• We could talk about this mechanistically, deny 
that the computer understands anything, and 
deny that communication is taking place 

• But this overlooks the ways in which 
print(2+2) is linguistically meaningful



Examples

• E.g., Bernstein v. DoJ: software can be First-
Amendment-covered speech 

• E.g., Computer Associates v. Altai: software can be 
copyrightable 

• Neither of these cases is intelligible if software is 
inherently only a functional artifact 

• For better or for worse, we program computers 
with words that have meaning to humanns
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Program meaning



Who is the interpreter?

• Legal texts are addressed to people: citizens, 
counterparties, guests, and especially judges 

• They mean what they mean to people 

• Programs are addressed to computers: they 
consists of a series of commands to execute 

• Do they mean (only) what they cause 
computers to do?



Program meaning

• A family of theories that a program’s meaning is 
determined by what it causes a computer to do 

• A naïve version would look to to a specific physical 
computer an actual execution at a specific time+place 

• This is obviously insufficient, because it ignores 
that actual computers can and do malfunction 

• A more sophisticated version would look to an 
idealized, abstracted, correctly functioning computer



Where does program 
meaning come from?

• What does 2**2 mean in a programming language? 

• Three answers: 

• Use a program: a reference implementation whose 
behavior is by stipulation treated as correct 

• Use natural language: a specification that defines 
the behavior of a correct implementation 

• Use mathematics: a formal semantics that identifies 
programs with abstract entities



More questions

• Where do specifications and semantics come from? 

• Some people got together to define them 

• What language are we running? 

• “Python” 2.7 is different from “Python” 3.6 

• print 2+2 is a valid program only in the former 

• These questions can be answered only by reference 
to a community of programmers and users



Program meaning = 
extreme literal meaning

• Programming languages have determinate 
syntax, semantics, and pragmatics: 

• No internal ambiguity or vagueness 

• No implicature 

• No reference to the outside world 

• Ambiguity is pushed upstream from the 
program’s semantics into the language’s



Other meanings



But wait, there’s more!

• Programmers and users routinely act in ways 
that show they consider program meaning 
inadequate for their purposes 

• E.g., the very idea of a “bug” presupposes that 
program meaning might fail to reflect a 
programmer’s communicative intent 

• E.g., the CFAA would be incoherent if 
program meaning determined authorization



Programmer meaning

• A family of theories that a program’s meaning is what a 
programmer would believe the program is attempting to do 

• Obviously comes in many variants corresponding to whose 
perspective one adopts (e.g., author vs. reasonable 
programmer) and what contextual information one looks to 
(e.g. documentation) 

• A reasonable programmer might understand that pint(2+2) 
is a buggy program to print 4 

• The communication to readers of the code succeeds, even if 
the program itself fails to execute



Incidental meaning 

• In Python, lines starting with # are ignored 

• Programmers use comments to document 
their work, for themselves and others 

• Or to make jokes, etc. 

• This is incidental meaning: it is independent of 
what the program does



from itertools import repeat 
for feet in [3,3,2,2,3]: 
     print " ".join("DA-DA-DUM" 
     for dummy in [None] 
for foot in repeat("metric", feet)) 

DA-DA-DUM DA-DA-DUM DA-DA-DUM 
DA-DA-DUM DA-DA-DUM DA-DA-DUM 
DA-DA-DUM DA-DA-DUM 
DA-DA-DUM DA-DA-DUM 
DA-DA-DUM DA-DA-DUM DA-DA-DUM



                                       /* 
                                      + 
                                     + 
                                    + 
                                    + 
                                    [         >i>n[t 
                                     */   #include<stdio.h> 
                        /*2w0,1m2,]_<n+a m+o>r>i>=>(['0n1'0)1; 
                     */int/**/main(int/**/n,char**m){FILE*p,*q;int        A,k,a,r,i/* 
                   #uinndcelfu_dset<rsitcdti_oa.nhs>i/_*/;char*d="P%"   "d\n%d\40%d"/**/ 
                 "\n%d\n\00wb+",b[1024],y[]="yuriyurarararayuruyuri*daijiken**akkari~n**" 
          "/y*u*k/riin<ty(uyr)g,aur,arr[a1r2a82*y2*/u*r{uyu}riOcyurhiyua**rrar+*arayra*=" 
       "yuruyurwiyuriyurara'rariayuruyuriyuriyu>rarararayuruy9uriyu3riyurar_aBrMaPrOaWy^?" 
      "*]/f]`;hvroai<dp/f*i*s/<ii(f)a{tpguat<cahfaurh(+uf)a;f}vivn+tf/g*`*w/jmaa+i`ni("/** 
     */"i+k[>+b+i>++b++>l[rb";int/**/u;for(i=0;i<101;i++)y[i*2]^="~hktrvg~dmG*eoa+%squ#l2" 
     ":(wn\"1l))v?wM353{/Y;lgcGp`vedllwudvOK`cct~[|ju {stkjalor(stwvne\"gt\"yogYURUYURI"[ 
     i]^y[i*2+1]^4;/*!*/p=(n>1&&(m[1][0]-'-'||m[1][1]  !='\0'))?fopen(m[1],y+298):stdin; 
      /*y/riynrt~(^w^)],]c+h+a+r+*+*[n>)+{>f+o<r<(-m]    =<2<5<64;}-]-(m+;yry[rm*])/[* 
       */q=(n<3||!(m[2][0]-'-'||m[2][1]))?stdout /*]{     }[*/:fopen(m[2],d+14);if(!p||/* 
       "]<<*-]>y++>u>>+r >+u+++y>--u---r>++i+++"  <)<      ;[>-m-.>a-.-i.++n.>[(w)*/!q/**/) 
    return+printf("Can "  "not\x20open\40%s\40"    ""       "for\40%sing\n",m[!p?1:2],!p?/* 
  o=82]5<<+(+3+1+&.(+  m  +-+1.)<)<|<|.6>4>-+(>    m-        &-1.9-2-)-|-|.28>-w-?-m.:>([28+ 
 */"read":"writ");for  (   a=k=u= 0;y[u];  u=2    +u){y[k++   ]=y[u];}if((a=fread(b,1,1024/* 
,mY/R*Y"R*/,p/*U*/)/*          R*/ )>/*U{  */   2&& b/*Y*/[0]/*U*/=='P' &&4==/*"y*r/y)r\} 
*/sscanf(b,d,&k,& A,&           i,  &r)&&        !   (k-6&&k -5)&&r==255){u=A;if(n>3){/* 
]&<1<6<?<m.-+1>3> +:+ .1>3+++     .   -m-)      -;.u+=++.1<0< <; f<o<r<(.;<([m(=)/8*/ 
u++;i++;}fprintf   (q,    d,k,           u      >>1,i>>1,r);u  = k-5?8:4;k=3;}else 
  /*]>*/{(u)=/*{   p> >u  >t>-]s                >++(.yryr*/+(    n+14>17)?8/4:8*5/ 
     4;}for(r=i=0  ;  ;){u*=6;u+=                (n>3?1:0);if    (y[u]&01)fputc(/* 
      <g-e<t.c>h.a r  -(-).)8+<1.                 >;+i.(<)<     <)+{+i.f>([180*/1* 
      (r),q);if(y[u   ]&16)k=A;if                               (y[u]&2)k--;if(i/* 
      ("^w^NAMORI; {   I*/==a/*"                               )*/){/**/i=a=(u)*11 
       &255;if(1&&0>=     (a=                                 fread(b,1,1024,p))&& 
        ")]i>(w)-;} {                                         /i-f-(-m--M1-0.)<{" 
         [ 8]==59/* */                                       )break;i=0;}r=b[i++] 
            ;u+=(/**>>                                     *..</<<<)<[[;]**/+8&* 
            (y+u))?(10-              r?4:2):(y[u]         &4)?(k?2:4):2;u=y[u/* 
             49;7i\(w)/;}             y}ru\=*ri[        ,mc]o;n}trientuu ren ( 
             */]-(int)'`';}             fclose(          p);k= +fclose( q); 
              /*] <*.na/m*o{ri{                       d;^w^;}  }^_^}} 
               "   */   return  k-                -1+   /*\'   '-`*/ 
                     (   -/*}/   */0x01        );       {;{    }} 
                            ;           /*^w^*/        ;}



User meaning 

• The Python program print('Hello!') 
displays the text “Hello!” to the user 

• The string 'Hello!' is arbitrary: Python just 
prints a sequence of six characters 

• The communicative meaning of “Hello!” as a 
greeting comes from English, not Python 

• This is user meaning: a further communicative act 
that results from a program’s execution



A tentative diagram
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Law and software



How should courts 
interpret software?

• Which theory of meaning is legally required in 
a given context is a question of positive law 

• Which theory yields the best results depends on 
an underlying normative framework 

• Computer science can tell lawyers how 
programmers do their jobs, but it cannot tell 
lawyers how to do their jobs
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Reading software?



 Back to robots.txt

• The relevant legal question is whether the web host has 
communicated the denial of permission — which 
requires looking at the robots.txt denial through the eyes 
of a reasonable web scraper, who would understand: 

(1) Dialloq isn’t a valid keyword 

(2) The standard is written for bots to process 

• (2) means that the relevant community has selected into 
program meaning i.e., (1) is not “corrected” to Disallow



Other directions



Thinking about  
legal interpretation

• Program meaning shows by contrast that the 
debate over textualism may be overblown 

• The difference between textualist and other 
theories is far smaller than the difference 
between any of them and program meaning 

• Typos do not cause statutes to crash



Ideal interpreters

• Is the ideal of a judge another programmer who 
helps the legislature test and debug its code? 

• Or is the ideal of a judge a reliable computer 
who correctly executes the legislature’s code?



Formalizing law

• Legal interpretation is messy because: 

1. Natural language is messy 

2. The world is messy 

3. People are messy 

• Writing legal texts in software can help with (1) but 
not with (2), and therefore can’t fully solve (3) 

• Any computer system capable of interpreting natural-
language texts or doing fact-finding will also be messy



On debugging

• Program analysis and testing are essential to 
modern software development 

• They enable programmers to learn about what a 
program they wrote does before releasing it 

• (Cf., the Constitution forbids the federal courts 
from issuing pre-release “advisory” opinions) 

• Can these software development techniques be 
pulled back into law?



Questions?


