
The Structure and
Legal Interpretation of
Computer Programs

James Grimmelmann

Cornell Tech/Law Colloquium
October ,

Three vignettes

Video poker

Website scraping

User-agent: *

Disallow: /private/

User-agent: *

Dsallow: /private/

The DAO

“The terms of The DAO Creation are set forth in the smart
contract code existing on the Ethereum blockchain at
0xbb9bc244d798123fde783fcc1c72d3bb8c189413.
Nothing in this explanation of terms or in any other
document or communication may modify or add any
additional obligations or guarantees beyond those set forth
in The DAO’s code.”

The question stated

What are the
legal effects of software?

• Distinguish the factual effects of software

• E.g., self-driving cars, pacemakers, etc.

• Distinguish the expressive content of software

• E.g., Facebook Like button, MS Paint, etc.

• These are cases in which the software itself
changes legal relationships

• In Hohfeldian terms, “exercises a power”

Obvious legal analogs

• Legislatures affect citizens via statutes

• Agencies affect citizens via regulations

• Private parties affect each other via contracts

• Testators affect heirs via wills

• Property owners affect users via licenses

A natural parallel

• A person exercises a legal power through a text

• The person must actually hold the power

• They must adopt the text in the correct way
(e.g., a will must be signed and witnessed)

• The meaning of the text determines its effects

• What are the (legal) interpretive rules for software?

Plan of attack

• Trace the techniques used by computer
scientists to say what a program means

• Compare them to the techniques used by
judges to say what a legal instrument means

• Determine how legal interpreters should rely
on or depart from these techniques

Code is law?

Interpretation and
construction

• Distinguish interpretation from construction

• Interpretation: determining linguistic meaning

• Construction: determining legal effects

• The conventional account is that construction
is necessary because texts are sometimes vague

• That is, the linguistic meaning “runs out”
and it becomes necessary to fill in the gaps

Software is different

• Legal texts’ legal effects are their only effects

• But software is primarily a functional artifact

• It drives cars, turns lights on, modifies account
balances, shows or hides data, etc.

• In our vignettes, the principal thing software is
expressing is how to use it

• What it (legally) means is derivative of what it does

Who is the interpreter?

• Legal texts are addressed to people: citizens,
counterparties, guests, and especially judges

• So we care about their meaning to people

• But software is addressed to computers: it
consists of a series of commands to execute

• I.e., the functional effects of a program
derive from its meaning to a computer

Interpretation without
construction?

• Natural language is inherently vague in a way
that programming languages are not

• Just run the code and see what it does!

• A program’s functional effects are its meaning

• Programs require (functional) interpretation
but not construction

• How does this fact affect their legal treatment?

Proposition:
functional meaning ≠ legal meaning

• Naive interpretive strategy: pure functional meaning

• Let the computer interpret the code for you,
and do not engage in any further construction

• What the code allows is what the law allows

• Legal meaning = functional meaning

• This is obviously insufficient as a theory

• Computers malfunction; software is buggy

Proposition:
functional meaning ~ legal meaning

• Not anything goes!

• Video poker is not video backgammon

• The DAO is incoherent unless there is some
determinate content to “the smart contract code
existing on the Ethereum blockchain at
0xbb9bc244d798123fde783fcc1c72d3bb8c18941”

• Legal meaning is grounded in functional meaning

Functional meaning

From hardware
to software

• Actual computers get hit by cosmic rays, suffer
hard drive failures, drop packets, etc.

• Idea (Turing, von Neumann, etc..): idealize
the computer as a mathematical abstraction

• Abstract away from faulty hardware

• Abstract away from specific hardware

• Focus on the text of the software

Specification
and semantics

• What does 2+2 mean?

• Three answers:

• Use a program: a reference implementation whose
behavior is by stipulation treated as correct

• Use natural language: a specification that defines
the behavior of a correct implementation

• Use mathematics: a formal semantics that
identifies programs with abstract entities

Two problems

• Where do specifications and semantics come from?

• Some people got together to define them

• What language are we running?

• “CSS” is different in Safari and Chrome

• “Python” is different in version 2.7 and version 3.6

• These questions can be answered only by reference to
a community of programmers and users

Where we are

• A technical community agrees on a process for
deriving a functional meaning from texts

• Developers implement that process on different
computers, with different tools, etc.

• Most of the time, running a program on most
implementations yields the same result

• New interpretive strategy: literal functional meaning,
what a correctly functioning computer would do

Features and bugs

The price we pay

• Running a program produces a result—but not
necessarily the right result

• This is characteristic of literal functional meaning
as an interpretive strategy: specifying in advance
the resolution of all possible ambiguities is a recipe
for predictably getting many of them wrong

• The concept of a “bug” assumes a distinction
between actual and intended program behavior

What is a bug?

• A programmer could:
• Type the wrong expression
• Misunderstand how the language works
• Misunderstand the algorithm they chose
• Misunderstand the problem they’re solving
• Fail to anticipate a possible input
• Make an incorrect assumption about the world
• Misunderstand a tool (library, API, etc.) they relied on
• Miscommunicate with a colleague
• Forget what they were doing and do something inconsistent
• Run the program on hardware that violates expectations
• Regret doing something they fully intended at the time
• …

This sounds familiar

• This list bears more than a passing resemblance to the
list of ways to misspeak

• The distinction between actual and intended meaning
carries over from natural to programming languages

• A speaker might produce an utterance her human
audience understands differently than she intended

• A programmer might produce a program that
computers interpret differently than she intended

Fixing bugs

• People detect and correct misstatements by
noticing incongruities and through discussion

• Computers are ill-positioned to do either

• They can be coded to accept a wider range
of inputs and make different assumptions

• Or humans monitoring them can notice
incongruities and engage in discussion

Ordinary meaning

• The ordinary legal meaning of a text is the
meaning a reasonable audience would give it

• The audience for a program consists of its users

• Users expect that a program contains bugs

• So the ordinary functional meaning of a program
is what reasonable people in the position of its
users and knowing what they know would
expect it to do, if it were free of bugs

Legal meaning

Back to legal meaning

• Computer programs can have legal effects
because the legal system says they do

• There are contexts where it treats functional
effects as the exercise of a legal power

• It does so because the audience for those
functional effects—video poker players, web
scrapers, DAO investors—can and should
recognize them as bearing legal meaning

When should the law depart
from actual meaning?

• With legal texts, this is the debate between
textualism and more contextual theories

• Computers seem to offer a much stricter version of
textualism: literal functional meaning, which treats
the actual computer’s interpretation as authoritative

• But sometimes computers fail to be competent
interpreters, and sometimes users prefer the
programmer’s intended interpretation

Two reasonable
interpretive theories

• Literal functional meaning: how a reasonable
computer would understand the program

• Abstracts away from malfunctions

• Ordinary functional meaning: what a reasonable user
would understand the programmer to have meant

• Abstracts away from malfunctions and bugs

• The choice between them depends on context

Video poker

• Reasonable video poker players understand:

(1) They are expected and allowed to play as skillfully
as they can to improve their payouts

(2) uitting and returning to a game after a hand has
been played probably wasn’t intended to change the
payout multiplier

• The case looks hard because of the conflict between
(1) and (2). But ordinary functional meaning controls,
and the payout trick looks like a bug, not a feature.

Robots.txt

• Reasonable web scrapers understand:

(1) Disallow was probably intended; Dsallow isn’t
a valid keyword in the robots exclusion standard

(2) The standard is designed for bots to process
automatically, not (primarily) for humans to read

• Literal functional meaning is appropriate because of
(2). Without specific knowledge (maybe even with
it), bot operators don’t need to respect Disallow.

The DAO

• Reasonable blockchain investors understand:

(1) The DAO contract was buggy

(2) The DAO’s legal instruments purported to make
the contract judicially unreviewable

(3) The DAO depends on Ethereum

• Whether (2) successfully selects literal functional
meaning is a question of offline contract law. But (3)
makes even literal functional meaning ambiguous!

Coda

Looking in the mirror

• Thinking about the power and limits of functional
meaning sheds light on legal interpretation

• Legal texts, like programs, are hybrids:

• They can be expressions of meaning to people

• They can be “programs” to convey legal effects
to judges and other officials

• How much do we want judges to act like users, and
how much do we want them to act like computers?

On debugging

• Program analysis and testing are essential to
modern software development

• They enable programmers to learn about what a
program they wrote does before releasing it

• (Cf., the Constitution forbids the federal courts
from issuing pre-release “advisory” opinions)

• Can these software development techniques be
pulled back into law?

uestions?

