

* Tessler Family Professor of Digital and Information Law, Cornell Tech and Cornell Law School. I presented earlier

versions of this essay at the COHUBICOL Philosophers’ Seminar on The Legal Effect of Code-Driven ‘Law’? on 11-12

November 2021, to the Boston University Cyber Alliance on 6 March 2019, and to the Cornell Tech/Law Colloquium

on 24 October 2017. My thanks to the organizers and participants, to the anonymous peer reviewers of this essay, and

to Aislinn Black, Nate Foster, Jean Galbraith, Sarah Lawsky and Lawrence Solum. james.grimmelmann@cornell.edu.

The Structure and Legal Interpretation
of Computer Programs

James Grimmelmann *

Abstract

This is an essay about the relationship between legal interpretation and software interpretation, and in

particular about what we gain by thinking about computers and programmers as interpreters in the same

way that lawyers and judges are interpreters. I wish to propose that there is something to be gained by

treating software as another type of law-like text, one that has its own interpretive rules, and that can be

analysed using the conceptual tools we typically apply to legal interpretation. In particular, we can usefully

distinguish three types of meaning that a program can have. The first is naive functional meaning: the effects

that a program has when executed on a specific computer on a specific occasion. The second is literal

functional meaning: the effects that a program would have if executed on a correctly functioning computer.

The third is ordinary functional meaning: the effects that a program would have if executed correctly and

was free of bugs. The punchline is that literal and ordinary functional meaning are inescapably social. The

notions of what makes a computer ‘correctly functioning’ and what makes a program ‘bug free’ depend on

the conventions of a particular technical community. We cannot reduce the meaning and effects of software

to purely technical questions, because although meaning in programming languages is conventional in a

different way than meaning in natural languages, it is conventional all the same.

Keywords: interpretation, software, programming languages, natural language, semantics

Replier: Marieke Huisman, Professor of Software Reliability, University of Twente •

m.huisman@utwente.nl

Journal of Cross-disciplinary Research in Computational Law

© 2023 James Grimmelmann

DOI: pending

Licensed under a Creative Commons BY-NC 4.0 license

www.journalcrcl.org

mailto:james.grimmelmann@cornell.edu
https://journalcrcl.org
mailto:m.huisman@utwente.nl
https://journalcrcl.org/

CRCL 1(3): Code-driven Computational Law 2023

2

Introduction

This is an essay about the relationship between legal

interpretation and software interpretation, and in par-

ticular about what we gain by thinking about comput-

ers and programmers as interpreters in the same way

that lawyers and judges are interpreters. I wish to pro-

pose that there is something to be gained by treating

software as another type of law-like text, one that has

its own interpretive rules and that can be analysed us-

ing the conceptual tools we typically apply to legal in-

terpretation.

The point of departure is that legal texts have effects in

the world that are based on their meaning. Statutes

shape people’s obligations, contracts give parties a

right to each other’s performance, deeds transfer

property, and so on. In each case, lawyers, judges and

laypeople must interpret these texts, giving them ef-

fect by determining their meaning.1

In a not completely dissimilar way, when a user causes

a computer to execute a program, it has effects in the

world. This too requires a kind of interpretation. The

computer treats the text of the program as a series of

instructions for action. Computer scientists call this

process ‘interpretation,’ and the term is apt.2 Whether

or not a computer is the sort of entity that can ascribe

meaning to a text, programmers and users certainly

are.3

To motivate the comparison, consider United States v.

Morris, in which Robert Tappan Morris was convicted

1 See William Baude and Stephen E. Sachs ‘The Law of Interpretation’ (2017) 130 Harvard Law Review 1079.
2 See e.g. Harold Abelson and Gerald Jay Sussman with Julie Sussman, The Structure and Interpretation of Computer Programs

(2nd edn MIT Press 1996).
3 See Lawrence B. Solum, ‘Artificial Meaning’ (2014) 89 Washington Law Review 69.
4 United States v. Morris 928 F. 2d 504 (2d Cir. 1991).
5 Ibid. at 510.
6 See generally Kent Greenawalt, Legal Interpretation: Perspectives from Other Disciplines and Private Texts (Oxford University

Press 2010).

under the Computer Fraud and Abuse Act (CFAA) for

installing a software worm on thousands of comput-

ers.4 The Second Circuit held that he acted ‘without

authorization’ based on how he used existing pro-

grams on those computers to install his worm:

He did not send or read mail nor discover infor-

mation about other users; instead he found

holes in both programs that permitted him a

special and unauthorized access route into

other computers.5

This line of reasoning presumes that the programs

themselves had legal effects grounded in their func-

tionality. Specific ways of using them were authorised;

other ways were not. Consciously or not, judges are al-

ready interpreting software. Their practices require

explanation and justification. This essay is a down

payment on both.

In particular, I make three claims. First, programs do

not have a single meaning that is appropriate under all

circumstances. Just as there are different ways to inter-

pret laws and literature, there are different ways to in-

terpret programs, and sometimes they yield different

meanings.6 Second, although these different mean-

ings need not be identical to the functional effects of

executing a program, they are all at least derivative of

those effects. The execution of programs on comput-

ers (both actual and hypothetical) is at the heart of

their meaning. Third, these meanings are inescapably

social. To the extent that we care about the meaning of

CRCL 1(3): Code-driven Computational Law 2023

3

a program, that meaning cannot be reduced to a

purely technical question.

Naive functional meaning

Legal texts are addressed to people: citizens, counter-

parties, guests and especially judges. They provide in-

structions that people are expected to understand and

implement. So we care about their meaning to people,

and our interpretive tools are meant to ascertain these

texts’ meanings for appropriate audiences of people.

The analysis of program interpretation is different be-

cause it inherently involves a computer. Even when a

person is reading a program, to read it as a program is

to treat it as instructions to a computer. The interpre-

tive tools required must take account of this fact.

This section takes a first cut at a theory of functional

interpretation grounded in the idea that programs are

defined by the fact that they can be executed on a

computer. The simplest possible such theory is that a

program’s meaning consists of the effects it has when

executed. I will call this theory naive functional mean-

ing, and while it ultimately falls short as a theory of

program meaning, it is the foundation on which better

theories can be built.

Software is functional text

Software is functional text addressed to a computer. A

program consists of a sequence of instructions. If the

program is provided to a computer in the right way

and the computer placed in an appropriate state, the

program will execute: that is, the computer will inter-

pret each instruction in turn, giving the instruction ef-

fect by changing its own state. This can cause it to

7 For a parallel example of how a family of distinct concepts can be derivative of a core concept, see Peter Westen, The Logic

of Consent: The Diversity and Deceptiveness of Consent as a Defense to Criminal Conduct (Routledge 2004).

display information in a form humans can understand

or to take other actions humans can observe. But first

and foremost, the program simply causes a computer

to alter its own state. That is what a computer program

is; that is what I mean when I say that software is pri-

marily functional. Any other effects or meanings soft-

ware has are derivative of this functional core.7

Programs, however, are not simply functional arti-

facts. Outboard motors, guillotines, Bunsen burners

and other machines also do things in the world. Soft-

ware is distinctive in that its functional effects are

themselves derivative of its meaning. Programs are

texts. True, they are written in programming lan-

guages rather than natural languages and they are ad-

dressed to computers rather than people. But they

consist of sequences of symbols in a language, their

use is to convey information, and anything they do

they do because they convey information to a recipi-

ent (a computer) that acts on it. This is the starting

point for analysis of programs as texts; all other mean-

ings we may wish to ascribe to them as texts are deriv-

ative of the fact that they are functional.

To be sure, a computer does not ‘understand’ or ‘in-

terpret’ a program in the same way that a person does.

(Indeed, the point of this section is to contrast how

computers interpret programs with how people inter-

pret natural-language texts.) But the essentially tex-

tual character of software is undeniable. A program is

not a tangible artifact like an automobile; it is made of

intangible information. Whether or not computers

understand a program by ascribing a meaning to it,

programmers certainly do — both when they write

code in the first place and when they read each others’

code.

CRCL 1(3): Code-driven Computational Law 2023

4

Indeed, programmers create and analyse software in

a fundamentally written-linguistic way. The process

starts with individual symbols, which natural linguists

would call graphemes and programming linguists

would call characters. These symbols are assembled

into units (morphology or lexical analysis, respec-

tively), these units are themselves assembled into

larger units (syntax), the larger expressions are given

abstract meanings (semantics), and those meanings

are filled in with specific contextual details (pragmat-

ics or the runtime, respectively). The terminology is

different, but the processes are structurally analo-

gous.8

Meaning and effect

There is an obvious way to ascertain the effects of a

program: run it and see what happens. The computer

will do something. That ‘something’ is the program’s

functional effect. Since programs, by definition, are

the class of texts that cause computers to do things, we

can use those effects to attribute meanings to the pro-

grams that produced them.

I will call this theory of interpretation naive functional

meaning and it is beautifully straightforward. It asserts

that what a program means is what it does, and what a

program does is what it means. There is no daylight

between the two.

Naive functional meaning is conceptually simple be-

cause it equates one concept of interest (a program’s

meaning) with another (a program’s effects). It is also

operationally simple because it supplies a real-world

procedure to answer questions about program mean-

ing: execute the program and observe what happens.

8 Compare Adrian Akmajian, Ann K. Farmer, Lee Bickmore, Richard A. Demers and Robert M. Harnish, Linguistics: An Intro-

duction to Language and Communication (7th edn MIT Press 2017) (natural linguistics) with Robert Sebesta, Concepts of

Programming Languages (11th edn Pearson 2015) (programming linguistics).
9 Gottfried Wilhelm Leibniz, ‘The Art of Discovery (1685)’ in Philip P. Wiener (ed), G. W. Leibniz: Selections (Scribner’s 1951).

(We will see in a moment that this ‘straightforward

real-world procedure’ is not quite so simple.)

The cardinal virtue of naive functional meaning as a

theory of interpretation is that it is unusually clear.

Natural language is inherently vague. No listener ever

understands an utterance in perfectly the same way as

the speaker meant it. Patterns of usage are always con-

tested around the margins and always in flux. Words

never fully capture the messy complexity of reality.

Any natural language is at best an approximation.

Programming languages do less but within their do-

main they are comparatively more precise. They do

not aspire to describe the world in all its detail, to ex-

press the richness of subjective experience, to make

threats or issue warnings. They are good for one thing

and one thing only: issuing commands to a computer.

Within their circumscribed domain, programming

languages avoid many of the pitfalls of natural lan-

guage.

This is the sense in which computers are ‘rational’,

‘logical’, and ‘objective’. One can argue about whether

a person is ‘tall,’ but there is no point in arguing about

what a program does, when we can run it and find out.

Leibniz wanted to make language precise and com-

putable, so that ‘when there are disputes among per-

sons, we can simply say: Let us calculate, without fur-

ther ado, to see who is right’.9 Programming languages,

it appears, achieve that ambition.

The interpretation-construction distinction provides

an illuminating perspective on naive functional

meaning. In the theory of legal interpretation, it is

conventional to distinguish interpretation from

CRCL 1(3): Code-driven Computational Law 2023

5

construction as stages of giving legal effect to a text.10

Interpretation is the process of determining the lin-

guistic meaning of a text. Construction is the process

of translating that linguistic meaning into its legal ef-

fects. The conventional account of the distinction is

that construction is necessary because texts can be

both ambiguous and vague. Interpretation can resolve

ambiguities and select the most appropriate of several

possible meanings. But, when a text is vague and has

no determinate meaning in some respect, interpreta-

tion cannot help. The meaning ‘runs out’, and the pro-

cess of construction fills in the gaps by consulting

sources beyond the text’s linguistic meaning. These

can include the expectations and goals of the text

drafters, historical practice, normative theories, policy

consequences, administrability and many other prac-

tical considerations.

In terms of the interpretation-construction distinc-

tion, then, naive functional meaning says that pro-

grams require interpretation (by a computer) but not

construction (by anyone). They are neither vague nor

ambiguous. A program has exactly one (technical)

meaning, which corresponds to the (functional) ef-

fects that it has when run. Thus, naive functional

meaning allows the computer to do the work of inter-

pretation (by executing the program) and then con-

siders any further work of construction to be unneces-

sary (since the computer has arrived at a single deter-

minate meaning for the program).

Naive functional meaning as a foundation

Naive functional meaning is obviously insufficient as

a theory of interpretation for a simple but devastating

10 Lawrence B. Solum, ‘The Interpretation-Construction Distinction’ (2010) 27 Constitutional Commentary 95.
11 For an actual case with similar facts, see Kennison v. Daire [1986] HCA 4.
12 Lawrence Lessig, Code: And Other Laws of Cyberspace (Basic Books 1999).
13 See James Grimmelmann, ‘Computer Crime Law Goes to the Casino’ (Technology | Academics | Policy (TAP), 24 May 2013)

<https://www.techpolicy.com/Grimmelmann_ComputerCrimeLawGoesToCasino.aspx> accessed 12 April 2023.

reason: programs are buggy. Real-world programs go

spectacularly wrong all the time in all kinds of ways.

Under naive functional meaning, every bug has bind-

ing legal effect. If a bank’s ATM software dispenses

USD 1000 in cash to anyone who holds down the right

combination of six buttons at once, naive functional

meaning would say that the entrepreneurs who go

around town draining every ATM they can find are en-

titled to keep every dollar.11 The software’s naive func-

tional meaning is that anyone who holds down the

right six buttons receives USD 1000; it provides no ba-

sis on which to say, ‘But that shouldn’t work!’ Naive

functional meaning takes Lessig’s slogan code is law to

the natural extreme: bug is law.12

But for all its flaws, naive functional meaning contains

a crucial core of insight. While legal meaning cannot

always be identical to technical meaning, it must at

least be grounded in technical meaning. Not every-

thing goes with software. Video poker is not video

backgammon. A smart contract is not a potato-salad

recipe. We can argue over whether a website allows or

prohibits access to a file, but both of these arguments

presuppose the possibility that such questions about

software can be answered at all. An ordinary video-

poker wager produces a clear win or loss, which is to

say that sometimes, in fact most of the time, technical

meaning does determine legal meaning.13

The problem with naive functional meaning is that it

is committed to the actual effects a program has when

run, whether those effects are right or wrong. To im-

prove on it, we must find a way to recognise and iso-

late cases in which a program has somehow gone

wrong, to keep the program’s meaning from going

https://www.techpolicy.com/Grimmelmann_ComputerCrimeLawGoesToCasino.aspx

CRCL 1(3): Code-driven Computational Law 2023

6

down with the ship. In other words, we require a the-

ory of program correctness: meaning equals effects

only when the program executes correctly according

to an externally specified standard.

Programming-language
specification

Fortunately, computer science has a theory of correct-

ness via specification: indeed, it is the conceptual

foundation on which the entire discipline is built. By

specifying precisely what a program is expected to do,

programmers can treat any actual execution that de-

viates from the specified expectation as incorrect,

whose effects can be disregarded. Indeed, with a

proper specification, there is a sense in which actual

execution becomes unnecessary. Instead, the pro-

gram’s meaning can be defined in terms of the effects

it would have on a properly functioning computer that

performs according to the specification.

Hardware and software as abstractions

Everyone who has ever worked with computers knows

that computers do not always work. One way in which

computers can fail is that, just like any other physical

device, they malfunction. Just as screwdrivers some-

times slip, gears sometimes break and engines some-

times lock up, computers sometimes go wrong even if

perfectly programmed. A stray cosmic ray can cause a

bit in memory to flip from 1 to 0 or 0 to 1. A power

surge can cause a computer to crash. Semiconductor

chips have manufacturing defects, rats chew through

wires and hard drives wear out. These are simply facts

of life to be managed. Computer and software

14 See generally David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture: ARM Edition (Morgan

Kaufmann Publishers 2015).

engineering are disciplines dedicated to systemati-

cally overcoming the fallibility of physical hardware.

The central idea of computer science is a response to

this problem: modelling computers as mathematical

abstractions. An idealised ‘stored-program computer’

consists only of a memory unit which contains numer-

ical data and a processor that can carry out very sim-

ple instructions, like ‘add numbers x and y’.14 The pro-

cessor fetches an instruction from the memory unit

along with any data the instruction needs, then carries

out the instruction. New values can be written back to

the memory and an instruction can designate what lo-

cation in the memory holds the next instruction to be

executed.

The stored-program computer model is artificial. But

it occupies an appealing middle ground. On the one

hand, it is a faithful model of actual real-world com-

puters: although they are vastly more complicated,

their basic operations are faithfully represented at an

abstract level as stored-program computers. On the

other hand, stored-program computers can them-

selves be elegantly modelled by simple mathematical

abstractions like finite-state machines, Turing ma-

chines and the lambda calculus. Thus, they provide a

bridge between actual computers in all their messy

complexity and clean, well-behaved mathematical

models.

The stored-program computer model has a number of

important features. First, it abstracts away from irrele-

vant physical details. It does not matter whether the

voltage level in a transistor is 1.49 volts or 1.51 volts:

both will be regarded as simply representing a zero.

This is the key move that simplifies the immense com-

plexity of reality to the point where it is theoretically

CRCL 1(3): Code-driven Computational Law 2023

7

tractable. Second, it abstracts away from specific

hardware. Two Intel chips may have subtle manufac-

turing differences but they ought to be functionally

identical as far as the model is concerned. Indeed, so

should an Intel chip and an AMD chip implementing

the same instruction set. The actual hardware is irrel-

evant; only its behaviour on an abstract level is rele-

vant. In theory, you could build a stored-program

computer out of water wheels or Tinkertoys. Third, it

abstracts away from faulty hardware. The memory

chip hit by a cosmic ray deviates from the correct be-

haviour of a memory chip. Chip architects and engi-

neers will work to produce chips that do not suffer

such faults and software engineers will work to write

programs that can detect and fix them but all of this

work is so that programmers working with these chips

can ignore the possibility of cosmic-ray bit flips (most

of the time). The mathematical idealisation of the chip

is free from these physical risks entirely and program-

mers spend most of their time working with the ideal-

isation.

Another feature of the stored-program computer

model is a little subtler. It is a general-purpose com-

puter. By putting different instructions in the com-

puter’s memory at the outset, it is possible to make the

computer carry out different functions. Unlike a spe-

cial-purpose device which is designed to compute a

single function, like ‘find the square root of a number’,

a general-purpose computer can compute any func-

tion for which it is given suitable instructions. Or, in

more familiar terminology, it can be ‘programmed’.

This, then, is the source of the distinction between

hardware and software. A general-purpose device, the

hardware, is a physical system with physical proper-

ties. It can be programmed by loading it with specific

instructions, the software. The actual line between

hardware and software is vague and flexible; today it

is easy to find examples in which each can and often

does take on jobs usually associated with the other.

But the distinction itself is central to modern com-

puter science. It allows programmers to work with

software as text: sequences of symbols, abstracted

away from the specific machines on which they will

run and from the specific media on which they are

stored. It also allows us as theorists to work with soft-

ware as text and to focus on what that text communi-

cates.

Programming language semantics

Now that we have isolated programs as texts in our de-

scription of software, we can confront the question of

how a program comes to have a specific and specified

meaning. It is all well and good to say that a program-

mer can write the Python program

2 ** 3

but what does this program do? In one sense the an-

swer is trivial. Any competent Python programmer is

able to say that this program yields the value 8. But in

a deeper sense, this answer just raises further ques-

tions. Why is it that all Python programmers agree?

What had to take place for this remarkable uniformity

to be possible?

A descriptivist might say that the pattern of regularity

in the programmers’ answers is itself the only relevant

fact; there is nothing further to be posited or ex-

plained. But while this works as a theory of natural

language — language consists of usage norms — it

fails as a theory of programming languages. I could sit

a total novice down at a keyboard, have them type

2 ** 3 in a Python interpreter and ask them to report

back on what happens. This person who has never

programmed before, who does not ‘speak’ Python and

who has no knowledge whatsoever of what the symbol

** means or does, will nonetheless still report back

CRCL 1(3): Code-driven Computational Law 2023

8

that the interpreter prints ‘8’. So there is apparently a

fact about what 2 ** 3 means in Python that is inde-

pendent of the usage habits of Python programmers.

The meaning of a Python program inheres at least in

part in Python, not just in programmers’ minds.

A prescriptivist might then argue that Python defines

what Python programs mean and that the program-

mers’ usages and expectations are irrelevant. But

where did ‘Python’ come from? In 1917, long before

computers and long before Python, 2 ** 3 had no

meaning as a Python program. Or what if I modify my

Python interpreter (it is an open-source program, af-

ter all) so that ** is a multiplication operator rather

than an exponentiation operator, in which case my in-

terpreter will print 6 instead of 8? So something out-

side of the interpreter itself must determine the mean-

ing of this program. (Once again, ‘whatever the pro-

gram does’ is an incomplete answer.)

The answer to both questions is that programming

language semantics is both a social and technical pro-

cess: people agree about the meanings of programs

not directly, by saying ‘expression E in programming

language L means M’ but indirectly, by codifying their

agreements in technical processes that assign mean-

ings to classes of expressions in a programming lan-

guage.15 The community of Python programmers

agree on what Python is, and the meanings of specific

Python expressions (such as 2 ** 3) follow from that

agreement.16

15 See generally Donald A. Mackenzie, Mechanizing Proof: Computing, Risk, and Trust (MIT Press 2001).
16 See generally Stanley Fish, ‘Interpreting the “Variorum”’ (1976) 2 Critical Inquiry 465, 483 (defining an ‘interpretive com-

munity’ as ‘those who share interpretive strategies not for reading (in the conventional sense) but for writing texts, for con-

stituting their properties and assigning their intentions’).
17 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith and Gavin Bierman, The Java® Language Spec-

ification (Java SE 17th edn 2021).
18 Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley and Daniel Smith, The Java® Virtual Machine Specification (Java SE

17th edn 2021).

There are four broad classes of techniques program-

mers use to express their agreement on program-

ming-language semantics: informal natural-language

descriptions, formal mathematical semantics, refer-

ence implementations and test cases. It is worth look-

ing at them each in more detail. I will refer to them col-

lectively as specification.

Natural-language descriptions

A description can be a few lines in a README file tell-

ing a user what a program does in very general terms.

But others are more ambitious: they strive to describe

a language in sufficient detail such that one could cre-

ate an implementation by reading the description and

making the implementation conform to it. Java, for ex-

ample, has an 848-page language reference,17 supple-

mented by a 624-page virtual machine reference.18

These detailed descriptions are primarily written in

natural language, generously sprinkled with mathe-

matical notation and technical terms of art. Here is an

example from the 2,279-page Python Library Refer-

ence:

Math.atan2(y, x)

Return atan(y / x), in radians. The result is

between –pi and pi. The vector in the plane

from the origin to point (x, y) makes this an-

gle with the positive X axis. The point of

atan2() is that the signs of both inputs are

known to it, so it can compute the correct quad-

rant for the angle. For example, atan(1) and

CRCL 1(3): Code-driven Computational Law 2023

9

atan2(1, 1) are both pi/4, but atan2(-1,

-1) is -3*pi/4.19

To understand the expected meaning of atan2(1) in

Python, a programmer would need to know enough

mathematics to know what the ‘arc tangent’ is. To

write their own implementation of Python that in-

cludes this function, they would also need to know

enough about numerical methods to compute it accu-

rately.

Formal mathematical semantics

A second way to achieve consensus on the meaning of

programs in a given programming language is to give

a formal semantics for the language, which identifies

programs with abstract mathematical objects and

states rigorous theorems about those mathematical

objects.20 For example, the following rule defines the

semantics of an add operator in a hypothetical pro-

gramming language by adding (+) the values (v1 and

v2) of the expressions (e1 and e2) that add operates on.

𝑒1 → 𝑣1 𝑒2 → 𝑣2
add 𝑒1𝑒2 → 𝑣1 + 𝑣2

Formal semantics are not typically intended for every-

day use by programmers. Instead, they are useful in

establishing desirable properties of programs and im-

plementations. One use is in establishing that a lan-

guage as a whole has some nice feature, e.g. that pro-

grams written in it will never crash because they tried

to access a forbidden part of memory. These proofs

depend on the formal semantics of the languages to

which they apply. Another use is to automate the pro-

cess of looking for possible bugs in a code fragment —

or proving that it can contain no bugs of a given type

— a process that depends on having a good formal se-

mantics for the language in question. And a third is to

19 Guido van Rossum and the Python Development Team, The Python Library Reference (Release 3.10.1, 16 December 2021).
20 See generally e.g. Glynn Winskel, The Formal Semantics of Programming Languages: An Introduction (MIT Press 1993).

support the process of writing good implementations

of the language: a well-done formal semantics can

achieve high standards of unambiguity in describing

correct program behaviour.

Reference implementations

A third way for programmers to express their agree-

ment about a programming language is for them to

agree on a specific instantiation of that programming

language, a reference implementation. The reference

implementation is a version of the interpreter that ex-

ecutes programs in the language (or a compiler that

translates them into executable forms, or a translator

that transforms them from one language to another

with its own agreed-upon semantics). The community

of programmers agrees to treat the reference imple-

mentation as authoritative as to the meaning of pro-

grams in the language: whatever the reference imple-

mentation does is considered the correct behaviour.

Other implementations are possible, and for many

languages are quite common, but when another im-

plementation differs in its behaviour from the refer-

ence implementation, the other implementation is

considered to be the buggy one. This is an appeal to

‘whatever the program does’, but with a crucial differ-

ence: it is an appeal to a socially agreed program, and

therefore it excludes my idiosyncratic modified ver-

sion of Python.

This is a common strategy, so common in fact that

programmers do not always realise they are relying on

it. Python does not have an official reference imple-

mentation but it does have one so widely used that it

is de facto the reference implementation, called CPy-

thon. It is open-source software, written in a mixture

of Python and C, and if you are curious, you can

browse its source code at

CRCL 1(3): Code-driven Computational Law 2023

10

<https://github.com/python/cpython>. If you install

‘Python’ on your computer, you are likely to get a ver-

sion of CPython and many other Python implementa-

tions are modified versions of CPython. When I teach

a programming course in Python, we spend time in

the first week making sure that every student has ac-

cess to the same version of CPython. The result is that

I can tell students in class, ‘open up Python and type

in (...)’ and be confident that everyone in the class will

see the same result. This is, on a smaller scale, the kind

of consensus that agreement on a reference imple-

mentation provides.

Test cases

A fourth way of establishing consensus on program

meaning is to describe the behaviour of a language us-

ing test cases. A test case for a program is an input to-

gether with the expected results of running the pro-

gram on that input. Because test cases are examples,

they technically do not say anything about what pro-

grams should do on other inputs. It is very rare to

specify a language’s semantics entirely via test cases.

Instead, test cases are used in conjunction with other

approaches. For one thing, test cases can help make

informal descriptions and formal semantics more in-

telligible to human readers by providing concrete ex-

amples of abstract rules. (The description of atan2

above has three test cases embedded in the English

text.) For another, test cases can be used as double

checks for languages specified via these other meth-

ods: if the language is implemented correctly, then

these test cases will be correctly computed. An imple-

mentor who sees a test case fail knows they must have

made a mistake somewhere.21 Test cases can even be

used to verify that a reference implementation

21 See Kent Beck, Test-Driven Development by Example (Addison-Wesley Professional 2002).
22 See generally Randall Bryant and David O’Hallaron, Computer Systems: A Programmer’s Perspective (3rd edn Pearson 2015)

(describing the low-level abstractions of a computer).

conforms to itself. A ‘regression test’ is a test that a pro-

grammer runs after making some changes to their

program: if the results of the test change, it is an im-

mediate warning that something in the program’s be-

haviour has changed. On the assumption that the pro-

gram was working correctly before the change, the

programmer immediately knows that it is now work-

ing incorrectly.

Literal functional meaning

However achieved, specification of a programming

language provides a new way to ascribe meaning to a

program written in that language. Consider two cases:

in one, a bit flips in a computer’s memory as the result

of an addition specified by a program, while in the

other, a bit stored in the same physical memory loca-

tion flips as the result of being hit by a cosmic ray. Na-

ive functional meaning had no way to distinguish

these two cases, but now that we have a specification

for the relevant programming language — in this case,

the low-level binary language of machine code that

the physical computer implements — there is an ob-

vious difference between the two.22 Only the first re-

sult is consistent with the specification, that is, with

the ideal stored-program computer that the physical

computer implements and approximates.

The same reasoning applies to other cases where the

actual computer and the idealised computer differ:

when a physical computer has a manufacturing de-

fect, or when there is a bug in the software toolchain

that turns a programmer’s source code into executa-

ble machine code, or when the programmer executes

their code on an idiosyncratic non-standard system.

https://github.com/python/cpython

CRCL 1(3): Code-driven Computational Law 2023

11

In each case, reality departs from the model, but be-

cause the model defines the standard of correctness,

it is reality that is wrong.

Specification, then, provides a new interpretive strat-

egy. The literal functional meaning of a program is the

effect that a program would have when executed on a

computer that correctly implements the specification

of the programming language in which the program is

written. Literal functional meaning retains much of

naive functional meaning’s virtue in minimising am-

biguity: the meaning of a program is simply what the

specification says.

While naive functional meaning is tied to specific ex-

ecutions of a program on specific systems on specific

occasions, literal functional meaning abstracts away

from particular executions, computers and occasions.

In doing so, it avoids the pitfalls of following a specific

broken computer into the abyss; it is not subject to

problems of hardware malfunctions and idiosyncratic

variations in computer systems. Because of this ab-

straction, literal functional meaning is a genuine the-

ory of the meaning of programs as texts, rather than of

computers as physical machines.

Literal functional meaning is in a sense an extreme

version of natural-language literalism.23 It is both sim-

ple and rigorous. Although not quite as simple as na-

ive functional meaning, it is simple because of how

comparatively little it requires from judges and other

legal interpreters. Find an implementation of the rele-

vant programming language that the relevant tech-

nical community recognises as correctly implement-

ing the language specification. Then run that imple-

mentation and see what it does. And it is rigorous

23 See François Recanati, Literal Meaning (Cambridge University Press 2004).
24 See John David Ohlendorf, ‘Textualism and the Problem of Scrivener’s Error’ (2011) 64(1) Maine Law Review 119.
25 See Thomas Schoch, ‘computer/programs/useless/misc/polyglot’ <https://retas.de/thomas/computer/programs/use-

less/misc/polyglot/index.html> accessed 12 April 2023.

because it leaves so little wiggle room. Even fairly pure

variants of literalism have always included escape

hatches like the doctrine of scrivener’s error: suffi-

ciently obvious mistakes in a text will be corrected on

the (almost always fictional) theory that the mistake is

the product of a later copyist’s mistranscription.24 Lit-

eral functional meaning, for better or worse, has no

such outs.

Consensus and correctness

Literal functional meaning’s freedom from the physi-

cal comes at a steep price. Naive functional meaning

is tied to an actual execution: a program’s effects and

hence its meaning can be determined by examining a

specific physical computer, whose state can be objec-

tively observed (insofar as anything can be). But literal

functional meaning depends on an abstraction and

there is no guarantee that any actual computer cor-

rectly implements the language specification that de-

fines the meaning of a program. The program must be

interpreted in light of the specification, which re-

quires knowing what specification to interpret it

against.

Programs are not self-defining. We can give them a

meaning only with respect to a specific programming

language. Consider ‘polyglot’ programs, which are

valid programs in multiple different languages. The

program below, for example, is valid in six different

programming languages (Perl, C, the Unix shell,

Brainfuck, Whitespace, and Befunge).25 Its semantics

are well-defined only once one chooses one of these

six languages in which to interpret it as a program.

https://retas.de/thomas/computer/programs/useless/misc/polyglot/index.html
https://retas.de/thomas/computer/programs/useless/misc/polyglot/index.html

CRCL 1(3): Code-driven Computational Law 2023

12

This is an example of a deeper problem. It is not

enough for literal functional meaning to say that a

program is written in a given language. To interpret a

program, one must also know the contents of that lan-

guage’s specification. This is a conventional fact, not a

natural one: it depends on the practices of the people

who use the language.26 All four methods of program-

ming-language specification described above — ref-

erence implementations, informal descriptions, for-

mal semantics and test cases — are fundamentally so-

cial processes. 2**3 in Python returns 8 not because it

has to in any metaphysical sense, but because a com-

munity of Pythonistas agreed that it should. They

agreed that ‘Python’ is defined by what the Python

Language Reference says and what CPython does.

What CPython does on a given input is almost entirely

insulated from social processes, but the underlying

agreement that what CPython does is constitutive of

Python is not.

The source of meaning for computer programs, then,

is consensus within a technical community: the lan-

guage maintainers who write implementations of a

programming language, the programmers who write

programs in that language and the users who run

those programs using the implementations. Through

a combination of implementations, descriptions, se-

mantics and test cases the members of that commu-

nity agree in broad strokes about a process for extract-

ing functional effects from the text of programs. Com-

munity members instantiate that process on different

26 See Andrei Marmor, Social Conventions: From Language to Law (Princeton University Press 2009).

computers, using different implementations, and so

on. Most of the time, running the same program on

these different instantiations will produce (what com-

munity members agree is) the same result. This is how

the meaning of programs is fixed.

More precisely, to say that some combination of refer-

ence implementation, description, formal semantics,

and test cases is the specification S for a programming

language L is to say that the community of program-

mers and users of L have agreed that the correct be-

haviour of programs in L is defined by S. Even more

precisely, they have agreed that S provides a general,

effective, and authoritative procedure for determining

the effects of any program P that is written in L. If ap-

plying S to P yields effects E, then P means E in L, full

stop, end of story. You can assert that P has some other

effects E’ by explaining that P is actually a program in

some other language L’. You can try to persuade the

relevant community to adopt some other specifica-

tion S’ for L. But you cannot accurately assert that P,

regarded as a program in L, yields E’. It does not. The

community has agreed otherwise and the commu-

nity’s consensus does not support your idiosyncratic

meaning.

Breakdown

The dependence of literal functional meaning on con-

ventional facts has real consequences for interpreta-

tion. One is that it opens up a gap through which

define x u /* v
:::::::::::::::::::>>>>>>>$$$a"muroftih"#[>:#,_@]
eval 'echo "hitforum";exit';sub echo { print "@_\n"}
__END__>++++++++++>++++++++++[>+++++++++++>++++++++++
+<<-]>------.+.>++++++.<---.+++++++++.>--.+++
.<--.<<. */
main() { printf ("hitforum\n"); }

CRCL 1(3): Code-driven Computational Law 2023

13

ambiguity can re-enter.27 Reference implementations

can contain bugs; specifications can contain ambigu-

ous or vague phrases; even formal semantics can con-

tain mistakes (just as mathematical proofs can). Try-

ing to resolve these ambiguities can introduce others.

If you provide a specification for a new language, and

then try to iron out any glitches in the specification by

also providing a reference implementation, the ques-

tion will naturally arise: which controls when the two

of them differ? The same problem arises if one gives a

formal semantics and a natural-language description

of the formal semantics, and so on. Under many cir-

cumstances, these ambiguities will remain latent. For

all practical purposes, the meaning of 2**3 in Python

is completely settled, despite the almost certain exist-

ence of ambiguities elsewhere in the Python specifi-

cation. But they cannot be eliminated entirely. The

crooked timber of humanity is visible even in the code

we write.

Another way in which literal functional meaning can

break down is that programming-language specifica-

tions are often incomplete. Web pages can look differ-

ent in Firefox and Chrome because these two brows-

ers implement the Cascading Style Sheets language

standard with slight differences.28 Exhibiting a CSS

program (technically a ‘style sheet’) is not sufficient to

resolve the ambiguity about how it will appear on the

user’s screen without also specifying what browser the

user is running and other details of the execution en-

vironment. The CSS ‘language’ is actually a large fam-

ily of closely related languages implemented by differ-

ent browsers in different versions. A complete

27 See generally Terry Winograd and Fernando Flores, Understanding Computers and Cognition: A New Foundation for Design

(Ablex 1986).
28 See ‘Can I Use’ <https://caniuse.com> accessed 12 April 2023 (documenting browsers’ different support for Web standards).
29 See Georg Brandl and Serhiy Storchaka, ‘Python Enhancement Protocol 535 — Underscores in Numeric Literals’ (Feb. 10,

2016).
30 See James Grimmelmann, ‘All Smart Contracts Are Ambiguous’ (2019) 2 Journal of Law & Innovation 1.

specification of a programming language often must

include context-specific details.

Literal functional meaning can also change over time,

simply because programming-language communities

collectively decide to change the specification of a

language. If everyone agreed tomorrow that ‘Python’

should be defined differently, then it would be. For ex-

ample, Python versions 3.6 and above allow the use of

underscores in numbers as a kind of visual separator,

for example ‘1_000_000’ for one million, which is eas-

ier to read than ‘1000000’.29 Previous versions disal-

lowed underscores in numbers, so a program contain-

ing ‘1_000_000’ will produce an error if run in Python

3.5.2 but will work in Python 3.6.1. These changes, al-

most by definition, create ambiguities about what ‘Py-

thon’ does on particular inputs; one must specify a

version number to resolve the ambiguity.

If one is confronted with a ‘Python’ program and

asked what it means, the only sensible way to answer

the question is to look to the specific setting in which

the program is to be used and to the usage patterns of

the community running similar software, to deter-

mine what version they are using, and how they un-

derstand it to be defined.30 Literal functional meaning

commits us to asking empirical questions about social

facts.

Ordinary functional meaning

Literal functional meaning is not a complete theory of

software interpretation either. The process of filling its

https://caniuse.com/

CRCL 1(3): Code-driven Computational Law 2023

14

most obvious gap bears a striking resemblance to the

process by which we developed it in the first place.

Just as naive functional meaning lacks a satisfying

treatment of hardware malfunctions — cases in which

the computer fails to function as expected — literal

functional meaning lacks a satisfying treatment of

bugs — cases in which the program fails to function as

expected. In a malfunction, the computer diverges

from its specification; in a bug, the program diverges

from its intended functionality. Just as naive func-

tional meaning treats the computer’s actual behaviour

as authoritative even when we know better about

what the computer should have done, literal func-

tional meaning treats the program’s behaviour ac-

cording to the language specification as authoritative,

even when we know better about what the program

should have done. Just as we developed literal func-

tional meaning by looking closely at the source of our

knowledge about what the computer should have

done, we can develop a theory of ordinary functional

meaning by looking closely at the source of our

knowledge about what the program should have

done. Even the price we pay is similar: ordinary func-

tional meaning will have to take on board additional

conventional facts about the practices of program-

mers and users.

Bugs

Suppose that I am writing a program to draw an octa-

gon. But when I run my program, an eight-pointed

star appears on the screen. My code has a bug. So I

look closely at the code and I find that I have gotten

the math wrong: at each corner, the line should turn

by 45 degrees, not 135 degrees. So I delete 135 and re-

place it with 45. Now, when I run my program again,

an octagon appears. I have fixed the bug.

The literal functional meaning of my original program

was to draw an eight-pointed star. The literal func-

tional meaning of my revised program was to draw an

octagon. Two programs, two meanings. From the

point of literal functional meaning, these two are

equally valid. But from my point of view as a program-

mer, the two are not equally valid: one is buggy and

one is correct.

The concept of a bug presumes a distinction between

the actual and intended behaviour of a program. Pro-

gram P actually does E but the programmer intended

E’ and they can achieve it by changing the program

from P to P’. There are many kinds of bugs. A program-

mer could type the wrong expression: ** instead of *.

They could misunderstand how the language they are

using works. They could misunderstand how the algo-

rithm they chose works. They could misunderstand

the problem they are trying to solve, fail to anticipate

a possible user input, make an incorrect assumption

about the world, misunderstand a library or API they

relied on, miscommunicate with a colleague, forget

what they were doing at a previous time and do some-

thing inconsistent with it, run the program on hard-

ware that violates their expectations for how it works

or regret doing something they fully intended at the

time, to name just a few.

This list bears more than a passing resemblance to the

list of ways to misspeak in a natural language. The dis-

tinction between actual and intended meaning, then,

carries over from natural to programming languages.

Just as a speaker might produce an utterance that their

human audience understands differently than they

intended, a programmer might produce a program

that computers interpret differently than they in-

tended. The program has a determinate meaning in

the programming language they are using; it is just not

the meaning they were trying to express. As program-

mers can attest, this divergence between what a

CRCL 1(3): Code-driven Computational Law 2023

15

program does and what you want it to do is common.

Indeed, by some estimates programmers spend as

much time debugging — i.e. trying to close this gap —

than writing code in the first place.31

Debugging is characteristic of programming but not of

natural language. It is worth asking why. In conversa-

tions, and even to a significant extent in writing, peo-

ple detect and correct misstatements by noticing in-

congruities and through discussion. Computers, how-

ever, are ill-positioned to do either. Instead, error de-

tection and correction for programs is a matter of sec-

ond-best approaches. They can be coded to accept a

wider range of inputs and make different assumptions

about what the user might have meant: a spell-

checker with autocorrect is a simple example. But they

still have to be programmed to do so; they lack (for

now at least) the broad adaptability humans have in

understanding the nuances of what a speaker might

have intended.32

Ordinary functional meaning

Now it should be clear how literal functional meaning

goes wrong in a normative sense when it deals with

buggy code. It is oblivious to the knowledge that a rel-

evant community of programming-language users

brings to the task about how the program is intended

to function. It is precisely because technical commu-

nities are capable of recognising and fixing bugs that

we can appeal to those abilities in constructing

31 E.g. Chris Grams, ‘How Much Time Do Developers Spend Actually Writing Code?’ (The New Stack, 2019) <https://the-

newstack.io/how-much-time-do-developers-spend-actually-writing-code/> accessed 12 April 2023 (32% ‘Writing new

code or improving existing code’ versus 31% ‘Code maintenance’ and ‘testing’).
32 Cf. Karen E.C. Levy, ‘Book-Smart, not Street-Smart: Blockchain-Based Smart Contracts and the Social Workings of Law’

(2017) 3 Engaging Science, Technology & Society 1 (discussing why contracting parties may not want the literal exactitude

of computer interpretation of software).
33 See generally Brian G. Slocum, Ordinary Legal Meaning: A Theory of the Most Fundamental Principle of Legal Interpretation

(University of Chicago Press 2015).

another theory of program meaning, one that makes

appropriate corrections for buggy code.

The ordinary linguistic meaning of an utterance is the

meaning that a reasonable audience would give it.33

The audience, as competent speakers of the relevant

language, make allowances for slips of the tongue,

grammatical mistakes, confusions about word mean-

ings, and more. They attempt to reconstruct, as best

they can, the meaning that the speaker intended to

convey by means of the utterance.

The audience for a program consists of the relevant

technical community of programmers and users. And

that technical community is familiar with the distinc-

tion between actual and intended program meaning;

it expects (as a predictive matter) that programs con-

tain bugs. Sometimes, when looking at a program,

readers can tell not just what it actually does, but what

its programmer intended for it to do. Not all bugs are

of this sort, but many are, and when programmers en-

counter one, they will reliably agree on what the actual

programmer probably wanted.

Thus, the ordinary functional meaning of a program is

what reasonable people in the position of its program-

mer and knowing what they know would expect the

program to do, if it were free of bugs. Ordinary func-

tional meaning is more prone to ambiguity than literal

functional meaning — witness the old joke, ‘That’s not

a bug, that’s a feature!’ — but it captures the collective

https://thenewstack.io/how-much-time-do-developers-spend-actually-writing-code/
https://thenewstack.io/how-much-time-do-developers-spend-actually-writing-code/

CRCL 1(3): Code-driven Computational Law 2023

16

expectations and the collective wisdom of a technical

community.

Choosing an interpretive strategy

To abuse the terminology of interpretation only

slightly, naive functional meaning adopts the view-

point of a specific actual computer, however unrea-

sonable that computer’s interpretation may be. Literal

functional meaning adopts the viewpoint of a reason-

able computer, where what is ‘reasonable’ is judged

with reference to a community of programming-lan-

guage users. Ordinary functional meaning adopts the

viewpoint of a reasonable programmer, where what is

‘reasonable’ is judged with reference to a community

of programmers and users.

The choice between these interpretive strategies is not

one that can be made in the abstract; it depends on

one’s reasons for asking. Programming as a profession

depends on adopting all three as needed, sometimes

even simultaneously. Indeed, the very practice of de-

bugging is unintelligible without both literal and ordi-

nary theories of functional meaning. To debug a pro-

gram is to change its behaviour by changing its text.

Without literal functional meaning, debugging would

be unnecessary — the programmer already knows

what the program is intended to do. Without ordinary

functional meaning, debugging would be pointless —

there is no reason to prefer one program text to an-

other. Only if a program can have both kinds of mean-

ings at once and the two can diverge does debugging

make sense. Even naive functional meaning has a role

to play. A programmer whose code is not working

needs to be alert to the possibility that the problem is

with their computer (naive and literal functional

34 Morris (n 4) at 510.
35 See James Grimmelmann, ‘Consenting to Computer Use’ (2016) 84 George Washington Law Review 1500.
36 See ‘The Web Robots Pages’ <https://www.robotstxt.org> accessed 12 April 2023.

meaning diverge) or with their code (literal and ordi-

nary functional meaning diverge).

The same is true for legal interpreters of software. The

choice between interpretive strategies is inextricably

bound up with the normative goals of interpretation.

Consider Morris and his CFAA conviction for misus-

ing programs like sendmail.34 The literal functional

meaning of sendmail allowed him to install his worm

program on computers, but its ordinary functional

meaning did not. The court’s holding that he ‘did not

use [sendmail] in any way related to [its] intended

function’ is a choice for ordinary functional meaning

— i.e. what a reasonable user would have known

sendmail was ‘intended’ to do, not what it actually

did.35 This choice was based on the court’s interpreta-

tion of ‘without authorisation’ in CFAA, and that inter-

pretation in turn implements Congress’s policy deci-

sion to deter the exploitation of bugs in programs like

sendmail.

But in other contexts, computer users need to be able

to rely on the exact behaviour of a program, without

having look behind its literal text to guess what its cre-

ator intended. If you misspell Disallow as Dsallow in

the robots.txt file that tells search engines which di-

rectories of your website they should not index, search

engines are free to index those directories.36 Even

though anyone who examines your robots.txt file

would be able to tell that Dsallow is a typo, it would be

normatively unreasonable to expect every search en-

gine operator to program their indexing software to

recognise all of the possible misspellings of Disallow.

This is a choice for literal functional meaning over or-

dinary functional meaning.

https://www.robotstxt.org/

CRCL 1(3): Code-driven Computational Law 2023

17

Conclusion

Thinking about software interpretation as though it

were legal interpretation may seem artificial, but it has

many applications.

▪ First, as discussed above, sometimes it is legal in-

terpretation: lawyers and judges are placed in po-

sitions where they must determine the legal effects

of software and thinking of software as a meaning-

bearing text provides a coherent and principled

way of doing so. Other contexts where similar is-

sues arise include copyright,37 the First Amend-

ment38 and smart contracts.39

▪ Second, it sheds light on computer science. Legal

interpretation is a pragmatic enterprise, in a way

that is a good fit for the pragmatism of program-

ming. Using legal theory’s conceptual toolkit to

talk about software engineering helps us under-

stand the linguistic, social and normative aspects

of technical processes, from standard setting to

software testing.

▪ Third, it sheds light on law. Literal functional

meaning is and is not like literal natural-linguistic

meaning; ordinary functional meaning is and is

not like ordinary legal meaning. Software interpre-

tation gives legal interpretation a mirror with

which to consider itself from a new and different

angle.

And this is just the beginning. We have not yet consid-

ered the meanings that programs convey to their users

directly: a webpage with the text ‘ACCESS

37 See e.g. Pamela Samuelson, ‘Functionality and Expression in Computer Programs: Refining the Tests for Software Copyright

Infringement’ (2016) 31 Berkeley Technology Law Journal 1215.
38 See e.g. Lee Tien, ‘Publishing Software as A Speech Act’ (2000) 15 Berkeley Technology Law Journal 629.
39 See e.g. Jason G. Allen, ‘Wrapped and Stacked: “Smart Contracts” and the Interaction of Natural and Formal Language’

(2018) 14 European Review of Contract Law 307.

PROHIBITED’ means something different than a page

that refuses to load with an HTTP 403 error. Nor have

we considered the meanings that programmers can

hide in the source-code comments of their programs

that have no functional consequences whatsoever. All

of these, and more, are necessary for a full legal under-

standing of software interpretation. The work awaits.

References

Kennison v Daire [1986] HCA 4.

United States v Morris 928 F2d 504 (2d Cir 1991).

Abelson H, Sussman GJ, and Sussman J, The Structure

and Interpretation of Computer Programs (2nd edn

MIT Press 1996).

Akmajian A and others, Linguistics: An Introduction to

Language and Communication (7th edn MIT Press

2017).

Allen JG, ‘Wrapped and Stacked: ‘Smart Contracts’

and the Interaction of Natural and Formal Lan-

guage’ (2018) 14(4) European Review of Contract

Law 307.

Baude W and Sachs SE, ‘The Law of Interpretation’

(2017) 130(4) Harvard Law Review.

Beck K, Test-Driven Development: By Example (Addi-

son-Wesley Professional 2002).

Brandl G and Storchaka S, ‘Python Enhancement Pro-

tocol 535 – Underscores in Numeric Literals’ (10

February 2016), https://peps.python.org/pep-

0515/.

Bryant R and O’Hallaron D, Computer Systems: A Pro-

grammer’s Perspective (3rd edn Pearson 2015).

‘Can I Use’ <https://caniuse.com>.

https://peps.python.org/pep-0515/
https://peps.python.org/pep-0515/
https://caniuse.com/

CRCL 1(3): Code-driven Computational Law 2023

18

Fish SE, ‘Interpreting the "Variorum"’ (1976) 2(3) Crit-

ical Inquiry 465.

Gosling J and others, ‘The Java® Language Specifica-

tion’ (9 August 2021) <https://docs.ora-

cle.com/javase/specs/jls/se17/ html/>.

Grams C, ‘How Much Time Do Developers Spend Ac-

tually Writing Code?’ (2019) <https://the-

newstack.io/how-muchtime-do-developers-

spend-actually-writing-code/>.

Greenawalt K, Legal Interpretation: Perspectives from

Other Disciplines and Private Texts (Oxford Uni-

versity Press 2010).

Grimmelmann J, ‘Computer Crime Law Goes to the

Casino’ (Technology | Academics | Policy (TAP),

24 May 2013) <https://www.techpol-

icy.com/Grimmelmann_ComputerCrimeLaw-

GoesToCasino.aspx>.

— ‘Consenting to Computer Use’ (2016) 84(6) The

George Washington Law Review 1500.

— ‘All Smart Contracts Are Ambiguous’ (2019) 2(1)

Journal of Law & Innovation 1.

Harris S and Harris D, Digital Design and Computer

Architecture: ARM Edition (Morgan Kaufmann

Publishers 2015).

Leibniz GW, ‘The Art of Discovery (1685)’ in Wiener

PP (ed), G.W. Leibniz: Selections (New York: Scrib-

ner’s 1951).

Lessig L, Code: And Other Laws of Cyberspace (Basic

Books 1999).

Levy KEC, ‘Book-Smart, Not Street-Smart: Block-

chain-Based Smart Contracts and the Social

Workings of Law’ (2017) 3 Engaging Science,

Technology & Society 1.

Lindholm T and others, ‘The Java® Virtual Machine

Specification’ (2021) <https://docs.ora-

cle.com/javase/specs/jvms/se17/html/in-

dex.html>.

Mackenzie D, Mechanizing Proof: Computing, Risk,

and Trust (MIT Press 2001).

Marmor A, Social Conventions: From Language to

Law (Princeton University Press 2009).

Ohlendorf JD, ‘Textualism and the Problem of Scrive-

ner’s Error’ (2011) 64(1) Maine Law Review 119.

Recanati F, Literal Meaning (Cambridge University

Press 2003).

Rossum G van and the Python Development Team,

The Python Library Reference (Release 3.10.1, 16

December 2021).

Samuelson P, ‘Functionality and Expression in Com-

puter Programs: Refining the Tests for Software

Copyright Infringement’ (2016) 31(3) Berkeley

Technology Law Journal 1215.

Schoch T, ‘computer/programs/useless/misc/poly-

glot’ <https://retas.de/thomas/computer/pro-

grams/useless/misc/polyglot/index.html>.

Sebesta R, Concepts of Programming Languages (11th

edn Pearson 2015).

Slocum BG, Ordinary Meaning: A Theory of the Most

Fundamental Principle of Legal Interpretation

(University of Chicago Press 2015).

Solum LB, ‘The Interpretation-Construction Distinc-

tion’ (2010) 95 Constitutional Commentary.

— ‘Artificial Meaning’ (2014) 89 Washington Law Re-

view 69.

‘The Web Robots Pages’ <https://www.robotstxt.org>.

Tien L, ‘Publishing Software As A Speech Act’ (2000)

15(2) Berkeley Technology Law Journal 629.

Westen P, The Logic of Consent: The Diversity and De-

ceptiveness of Consent as a Defense to Criminal

Conduct (Routledge 2004).

Winograd T and Flores F, Understanding Computers

and Cognition: A New Foundation for Design

(Ablex 1986).

Winskel G, The Formal Semantics of Programming

Languages: An Introduction (MIT Press 1993).

https://docs.oracle.com/javase/specs/jls/se17/
https://docs.oracle.com/javase/specs/jls/se17/
https://docs.oracle.com/javase/specs/jls/se17/html/
https://thenewstack.io/how-much
https://thenewstack.io/how-much
https://thenewstack.io/how-much-time-do-developers-spend-actually-writing-code/
https://thenewstack.io/how-much-time-do-developers-spend-actually-writing-code/
https://www.techpolicy.com/Grimmelmann_ComputerCrimeLawGoesToCasino.aspx
https://www.techpolicy.com/Grimmelmann_ComputerCrimeLawGoesToCasino.aspx
https://www.techpolicy.com/Grimmelmann_ComputerCrimeLawGoesToCasino.aspx
https://www.techpolicy.com/Grimmelmann_ComputerCrimeLawGoesToCasino.aspx
https://docs.oracle.com/javase/specs/jvms/
https://docs.oracle.com/javase/specs/jvms/
https://docs.oracle.com/javase/specs/jvms/se17/html/index.html
https://docs.oracle.com/javase/specs/jvms/se17/html/index.html
https://retas.de/thomas/computer/programs/useless/misc/polyglot/index.html
https://retas.de/thomas/computer/programs/useless/misc/polyglot/index.html
https://www.robotstxt.org/

CRCL 1(3): Code-driven Computational Law 2023

19

A reply: On the need for program contracts

Marieke Huisman • University of Twente, m.huisman@utwente.nl

I enjoyed reading this paper, in particular because it

discusses a field that I know very well from a com-

pletely different perspective. There are several points

that I would like to respond to.

First of all, the paper introduces several ways to look

at the meaning of a computer program. However, in

computer science, the meaning of a program is a well-

defined concept: it is what is defined as the formal se-

mantics of the program. Formal program semantics

defines the behaviour of a program in terms of a math-

ematical object. All other ways that can be used to de-

scribe the meaning of a program, need to be equiva-

lent to, or can be derived from this formal semantics.

If there is a discrepancy between those, then normally

the formal semantics is considered to be the ground

truth.

In his paper, James Grimmelmann takes a rather basic

view of what a computer program is. Modern software

is becoming very complex, however, which has an im-

pact on the meaning of the program. I will describe

several of these additional complexities.

The paper never mentions explicitly that most com-

puter programs take some input, and thus the mean-

ing of the program depends on the input that is pro-

vided. When we take this into account, we see that we

have to think about questions such as:

▪ what are legal inputs for the program?

▪ what will the program do if it is called with illegal

input?

Capturing this is part of describing the meaning of a

program.

Moreover, modern programming languages have ad-

ditional control features like exceptions and support

for parallelism. Exceptions are a way to handle excep-

tional situations, e.g. if a program is called with illegal

input, if internally a computation goes wrong, or if the

program runs out of memory. When describing the

meaning of a program, this means that different

modes of termination have to be considered. In par-

ticular, if a program does terminate in an exceptional

state, is this considered acceptable behaviour or not?

Moreover, if a program supports parallelism, there

might be multiple different behaviours, all of which

are acceptable. In a parallel program, multiple com-

putations happen in parallel, and no guarantees are

given about the respective speed of these individual

computations. For example, suppose that we have a

variable x, whose initial value is 0, and which is shared

by two parallel computations. Now we could have the

following behaviour: one computation first reads the

current value of x, and then adds 4 to it and stores that

in x again, while a second computation first reads x,

then multiplies it by 4 and then stores the result in x.

Depending on which computation happens first, the

final value of variable x can be either 4 or 16. When

describing the meaning of the program, we have to

capture the fact that both outcomes are possible and

acceptable. This example also illustrates why the

meaning of a program can never be described by look-

ing at a single execution only. Moreover, looking at

multiple executions is usually insufficient for parallel

mailto:m.huisman@utwente.nl

CRCL 1(3): Code-driven Computational Law 2023

20

programs: on specific hardware, one computation

might always be executed first, resulting in one spe-

cific behaviour, but if the program is later executed on

different hardware, it might suddenly exhibit a differ-

ent behaviour. Thus, the behaviour of such a parallel

program should be captured independently of the

specific hardware on which the program is executed.

The paper ends with a discussion of buggy programs,

and states that a program with a bug might not capture

the intended meaning of the program. This is an im-

portant problem, which receives a lot of attention

within computer science, and in particular within the

field of formal methods. The idea is that we should de-

couple what the program is computing from how it is

computing it. What is computed is considered to be

the program specification. Ideally, this is described in

a formal language (although it happens frequently

that the program’s intent is captured only in informal

documentation), while how it is computed is de-

scribed as the program implementation. Formal

methods are concerned with establishing a formal re-

lationship between the two, e.g. providing a guarantee

that a program correctly respects its specification. This

is of course closely connected to the program seman-

tics, because the guarantees have to be provided for all

possible program behaviours.

In my own research, the intended behaviour of a pro-

gram is typically described as a program contract,

which consists in essence of a precondition and a

postcondition for a program. The precondition speci-

fies what the legal inputs are for the program, while

the postcondition specifies what guarantees are pro-

vided by the program. If the program is correct, it

means that for all legal inputs the implemented pro-

gram will achieve the properties specified in the post-

condition. This formalism supports a separation of

concerns: any other program that uses this program

does not have to understand the implementation of

the program, but can rely on everything that is speci-

fied in the contract. Contracts also provide an answer

to the legal question of what the meaning of a program

is. The intended meaning is described as the contract,

and this is what users of the program should be able

to rely upon. It is the programmer’s responsibility to

guarantee that the program implementation respects

the program’s contract.

I believe that to continue the work on legal interpreta-

tion of software, these program specifications have to

be taken into account as well. This will also provide an

incentive for programmers to actually describe the in-

tended meaning of their programs as a formal specifi-

cation, rather than in informal documentation only. A

major advantage of writing down the formal specifica-

tion is that it becomes possible to use tools to check

that the program respects its specification. This will

help to increase the quality of programs, and to reduce

the number of software bugs that occur.

CRCL 1(3): Code-driven Computational Law 2023

21

Author’s response

James Grimmelmann

Marieke Huisman’s thoughtful reply makes a number

of good points that illustrate why the analogy between

software interpretation and legal interpretation is so

fruitful.

First, she mentions that ‘most computer programs

take some input’, so that the output is a function of the

input. In a similar way, legal rules are applied to many

different fact patterns, so that the effects of a rule de-

pend on the facts of a particular case. In this way, both

programs and legal rules define functions from con-

texts to consequences.

Second, she observes that programs can be written

with control features such as exception handling, so

that exceptional situations can still lead to well-de-

fined outputs. Here too there is a useful parallel to law.

Many contracts, statutes, and other legal texts are writ-

ten with savings clauses, which explain how the re-

mainder of the text should be applied if part of it is

held to be illegal or unenforceable.

Third, Huisman notes that programs can use parallel-

ism such that different executions yield different re-

sults where ‘both outcomes are possible and accepta-

ble’. Here the contrast with law is striking and illumi-

nating. This kind of nondeterminism is usually con-

sidered problematic whenever it occurs in law, even

though it seems to be an inevitable characteristic of

any legal system operated by humans. She succinctly

reminds us that nondeterminism is not a uniquely hu-

man characteristic; it is so pervasive in computing

that there are extensive formalisms to describe it.

Fourth, and most profoundly, Huisman explores the

use of formal methods to ‘guarantee that a program

correctly respects its specification’. This is a powerful

idea, because, in her words, it enables us to ‘decouple

what the program is computing from how it is compu-

ting it.’ From the perspective of a programmer using a

library, only the specified interface and not its imple-

mentation matters.

Huisman suggests that these program contracts could

serve as ‘an answer to the legal question of what the

meaning of a program is’. This is a delightful observa-

tion. The use of the same word to describe a program

‘contract’ and a legal ‘contract’ gets at a deeper truth:

they both involve a promise to behave in a particular

way. I think that she is right, and in many cases the

technical commitments made by the creator of an in-

terface about its parameters and return values will be

the best evidence available to a court as to what that

code was intended to do, and what its users expect it

do.

The final fascinating issue she raises, which I can

touch on only briefly here, involves the use of formal

verification to improve program quality. For all that I

have emphasized the similarities between programs

and legal texts as the products of human communica-

tion and consensus, this difference remains. We know

how to run verification tools against software, and

how to reduce or even eliminate certain kinds of er-

rors in programs. We have only the faintest idea of how

such a thing might even be feasible in law — and

much to learn from computer scientists about how to

tackle such a task.

	The Structure and Legal Interpretation of Computer Programs
	Introduction
	Naive functional meaning
	Software is functional text
	Meaning and effect
	Naive functional meaning as a foundation

	Programming-language specification
	Hardware and software as abstractions
	Programming language semantics
	Natural-language descriptions
	Formal mathematical semantics
	Reference implementations
	Test cases

	Literal functional meaning
	Consensus and correctness
	Breakdown

	Ordinary functional meaning
	Bugs
	Ordinary functional meaning
	Choosing an interpretive strategy

	Conclusion
	References

	A reply: On the need for program contracts
	Author’s response

