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Abstract 

This is an essay about the relationship between legal interpretation and software interpretation, and in 

particular about what we gain by thinking about computers and programmers as interpreters in the same 

way that lawyers and judges are interpreters. I wish to propose that there is something to be gained by 

treating software as another type of law-like text, one that has its own interpretive rules, and that can be 

analysed using the conceptual tools we typically apply to legal interpretation. In particular, we can usefully 

distinguish three types of meaning that a program can have. The first is naive functional meaning: the effects 

that a program has when executed on a specific computer on a specific occasion. The second is literal 

functional meaning: the effects that a program would have if executed on a correctly functioning computer. 

The third is ordinary functional meaning: the effects that a program would have if executed correctly and 

was free of bugs. The punchline is that literal and ordinary functional meaning are inescapably social. The 

notions of what makes a computer ‘correctly functioning’ and what makes a program ‘bug free’ depend on 

the conventions of a particular technical community. We cannot reduce the meaning and effects of software 

to purely technical questions, because although meaning in programming languages is conventional in a 

different way than meaning in natural languages, it is conventional all the same. 
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Introduction 

This is an essay about the relationship between legal 

interpretation and software interpretation, and in par-

ticular about what we gain by thinking about comput-

ers and programmers as interpreters in the same way 

that lawyers and judges are interpreters. I wish to pro-

pose that there is something to be gained by treating 

software as another type of law-like text, one that has 

its own interpretive rules and that can be analysed us-

ing the conceptual tools we typically apply to legal in-

terpretation. 

The point of departure is that legal texts have effects in 

the world that are based on their meaning. Statutes 

shape people’s obligations, contracts give parties a 

right to each other’s performance, deeds transfer 

property, and so on. In each case, lawyers, judges and 

laypeople must interpret these texts, giving them ef-

fect by determining their meaning.1 

In a not completely dissimilar way, when a user causes 

a computer to execute a program, it has effects in the 

world. This too requires a kind of interpretation. The 

computer treats the text of the program as a series of 

instructions for action. Computer scientists call this 

process ‘interpretation,’ and the term is apt.2 Whether 

or not a computer is the sort of entity that can ascribe 

meaning to a text, programmers and users certainly 

are.3 

To motivate the comparison, consider United States v. 

Morris, in which Robert Tappan Morris was convicted 

 
 
1 See William Baude and Stephen E. Sachs ‘The Law of Interpretation’ (2017) 130 Harvard Law Review 1079.  
2 See e.g. Harold Abelson and Gerald Jay Sussman with Julie Sussman, The Structure and Interpretation of Computer Programs 

(2nd edn MIT Press 1996).  
3 See Lawrence B. Solum, ‘Artificial Meaning’ (2014) 89 Washington Law Review 69. 
4 United States v. Morris 928 F. 2d 504 (2d Cir. 1991). 
5 Ibid. at 510. 
6 See generally Kent Greenawalt, Legal Interpretation: Perspectives from Other Disciplines and Private Texts (Oxford University 

Press 2010). 

under the Computer Fraud and Abuse Act (CFAA) for 

installing a software worm on thousands of comput-

ers.4 The Second Circuit held that he acted ‘without 

authorization’ based on how he used existing pro-

grams on those computers to install his worm: 

He did not send or read mail nor discover infor-

mation about other users; instead he found 

holes in both programs that permitted him a 

special and unauthorized access route into 

other computers.5 

This line of reasoning presumes that the programs 

themselves had legal effects grounded in their func-

tionality. Specific ways of using them were authorised; 

other ways were not. Consciously or not, judges are al-

ready interpreting software. Their practices require 

explanation and justification. This essay is a down 

payment on both. 

In particular, I make three claims. First, programs do 

not have a single meaning that is appropriate under all 

circumstances. Just as there are different ways to inter-

pret laws and literature, there are different ways to in-

terpret programs, and sometimes they yield different 

meanings.6 Second, although these different mean-

ings need not be identical to the functional effects of 

executing a program, they are all at least derivative of 

those effects. The execution of programs on comput-

ers (both actual and hypothetical) is at the heart of 

their meaning. Third, these meanings are inescapably 

social. To the extent that we care about the meaning of 
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a program, that meaning cannot be reduced to a 

purely technical question. 

Naive functional meaning 

Legal texts are addressed to people: citizens, counter-

parties, guests and especially judges. They provide in-

structions that people are expected to understand and 

implement. So we care about their meaning to people, 

and our interpretive tools are meant to ascertain these 

texts’ meanings for appropriate audiences of people.  

The analysis of program interpretation is different be-

cause it inherently involves a computer. Even when a 

person is reading a program, to read it as a program is 

to treat it as instructions to a computer. The interpre-

tive tools required must take account of this fact. 

This section takes a first cut at a theory of functional 

interpretation grounded in the idea that programs are 

defined by the fact that they can be executed on a 

computer. The simplest possible such theory is that a 

program’s meaning consists of the effects it has when 

executed. I will call this theory naive functional mean-

ing, and while it ultimately falls short as a theory of 

program meaning, it is the foundation on which better 

theories can be built. 

Software is functional text 

Software is functional text addressed to a computer. A 

program consists of a sequence of instructions. If the 

program is provided to a computer in the right way 

and the computer placed in an appropriate state, the 

program will execute: that is, the computer will inter-

pret each instruction in turn, giving the instruction ef-

fect by changing its own state. This can cause it to 

 
 
7 For a parallel example of how a family of distinct concepts can be derivative of a core concept, see Peter Westen, The Logic 

of Consent: The Diversity and Deceptiveness of Consent as a Defense to Criminal Conduct (Routledge 2004). 

display information in a form humans can understand 

or to take other actions humans can observe. But first 

and foremost, the program simply causes a computer 

to alter its own state. That is what a computer program 

is; that is what I mean when I say that software is pri-

marily functional. Any other effects or meanings soft-

ware has are derivative of this functional core.7 

Programs, however, are not simply functional arti-

facts. Outboard motors, guillotines, Bunsen burners 

and other machines also do things in the world. Soft-

ware is distinctive in that its functional effects are 

themselves derivative of its meaning. Programs are 

texts. True, they are written in programming lan-

guages rather than natural languages and they are ad-

dressed to computers rather than people. But they 

consist of sequences of symbols in a language, their 

use is to convey information, and anything they do 

they do because they convey information to a recipi-

ent (a computer) that acts on it. This is the starting 

point for analysis of programs as texts; all other mean-

ings we may wish to ascribe to them as texts are deriv-

ative of the fact that they are functional. 

To be sure, a computer does not ‘understand’ or ‘in-

terpret’ a program in the same way that a person does. 

(Indeed, the point of this section is to contrast how 

computers interpret programs with how people inter-

pret natural-language texts.) But the essentially tex-

tual character of software is undeniable. A program is 

not a tangible artifact like an automobile; it is made of 

intangible information. Whether or not computers 

understand a program by ascribing a meaning to it, 

programmers certainly do — both when they write 

code in the first place and when they read each others’ 

code. 
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Indeed, programmers create and analyse software in 

a fundamentally written-linguistic way. The process 

starts with individual symbols, which natural linguists 

would call graphemes and programming linguists 

would call characters. These symbols are assembled 

into units (morphology or lexical analysis, respec-

tively), these units are themselves assembled into 

larger units (syntax), the larger expressions are given 

abstract meanings (semantics), and those meanings 

are filled in with specific contextual details (pragmat-

ics or the runtime, respectively). The terminology is 

different, but the processes are structurally analo-

gous.8 

Meaning and effect 

There is an obvious way to ascertain the effects of a 

program: run it and see what happens. The computer 

will do something. That ‘something’ is the program’s 

functional effect. Since programs, by definition, are 

the class of texts that cause computers to do things, we 

can use those effects to attribute meanings to the pro-

grams that produced them. 

I will call this theory of interpretation naive functional 

meaning and it is beautifully straightforward. It asserts 

that what a program means is what it does, and what a 

program does is what it means. There is no daylight 

between the two. 

Naive functional meaning is conceptually simple be-

cause it equates one concept of interest (a program’s 

meaning) with another (a program’s effects). It is also 

operationally simple because it supplies a real-world 

procedure to answer questions about program mean-

ing: execute the program and observe what happens. 

 
 
8 Compare Adrian Akmajian, Ann K. Farmer, Lee Bickmore, Richard A. Demers and Robert M. Harnish, Linguistics: An Intro-

duction to Language and Communication (7th edn MIT Press 2017) (natural linguistics) with Robert Sebesta, Concepts of 

Programming Languages (11th edn Pearson 2015) (programming linguistics). 
9 Gottfried Wilhelm Leibniz, ‘The Art of Discovery (1685)’ in Philip P. Wiener (ed), G. W. Leibniz: Selections (Scribner’s 1951). 

(We will see in a moment that this ‘straightforward 

real-world procedure’ is not quite so simple.) 

The cardinal virtue of naive functional meaning as a 

theory of interpretation is that it is unusually clear. 

Natural language is inherently vague. No listener ever 

understands an utterance in perfectly the same way as 

the speaker meant it. Patterns of usage are always con-

tested around the margins and always in flux. Words 

never fully capture the messy complexity of reality. 

Any natural language is at best an approximation.  

Programming languages do less but within their do-

main they are comparatively more precise. They do 

not aspire to describe the world in all its detail, to ex-

press the richness of subjective experience, to make 

threats or issue warnings. They are good for one thing 

and one thing only: issuing commands to a computer. 

Within their circumscribed domain, programming 

languages avoid many of the pitfalls of natural lan-

guage.  

This is the sense in which computers are ‘rational’, 

‘logical’, and ‘objective’. One can argue about whether 

a person is ‘tall,’ but there is no point in arguing about 

what a program does, when we can run it and find out. 

Leibniz wanted to make language precise and com-

putable, so that ‘when there are disputes among per-

sons, we can simply say: Let us calculate, without fur-

ther ado, to see who is right’.9 Programming languages, 

it appears, achieve that ambition. 

The interpretation-construction distinction provides 

an illuminating perspective on naive functional 

meaning. In the theory of legal interpretation, it is 

conventional to distinguish interpretation from 
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construction as stages of giving legal effect to a text.10 

Interpretation is the process of determining the lin-

guistic meaning of a text. Construction is the process 

of translating that linguistic meaning into its legal ef-

fects. The conventional account of the distinction is 

that construction is necessary because texts can be 

both ambiguous and vague. Interpretation can resolve 

ambiguities and select the most appropriate of several 

possible meanings. But, when a text is vague and has 

no determinate meaning in some respect, interpreta-

tion cannot help. The meaning ‘runs out’, and the pro-

cess of construction fills in the gaps by consulting 

sources beyond the text’s linguistic meaning. These 

can include the expectations and goals of the text 

drafters, historical practice, normative theories, policy 

consequences, administrability and many other prac-

tical considerations. 

In terms of the interpretation-construction distinc-

tion, then, naive functional meaning says that pro-

grams require interpretation (by a computer) but not 

construction (by anyone). They are neither vague nor 

ambiguous. A program has exactly one (technical) 

meaning, which corresponds to the (functional) ef-

fects that it has when run. Thus, naive functional 

meaning allows the computer to do the work of inter-

pretation (by executing the program) and then con-

siders any further work of construction to be unneces-

sary (since the computer has arrived at a single deter-

minate meaning for the program). 

Naive functional meaning as a foundation 

Naive functional meaning is obviously insufficient as 

a theory of interpretation for a simple but devastating 

 
 
10 Lawrence B. Solum, ‘The Interpretation-Construction Distinction’ (2010) 27 Constitutional Commentary 95. 
11 For an actual case with similar facts, see Kennison v. Daire [1986] HCA 4. 
12 Lawrence Lessig, Code: And Other Laws of Cyberspace (Basic Books 1999). 
13 See James Grimmelmann, ‘Computer Crime Law Goes to the Casino’ (Technology | Academics | Policy (TAP), 24 May 2013) 

<https://www.techpolicy.com/Grimmelmann_ComputerCrimeLawGoesToCasino.aspx> accessed 12 April 2023.  

reason: programs are buggy. Real-world programs go 

spectacularly wrong all the time in all kinds of ways. 

Under naive functional meaning, every bug has bind-

ing legal effect. If a bank’s ATM software dispenses 

USD 1000 in cash to anyone who holds down the right 

combination of six buttons at once, naive functional 

meaning would say that the entrepreneurs who go 

around town draining every ATM they can find are en-

titled to keep every dollar.11 The software’s naive func-

tional meaning is that anyone who holds down the 

right six buttons receives USD 1000; it provides no ba-

sis on which to say, ‘But that shouldn’t work!’ Naive 

functional meaning takes Lessig’s slogan code is law to 

the natural extreme: bug is law.12 

But for all its flaws, naive functional meaning contains 

a crucial core of insight. While legal meaning cannot 

always be identical to technical meaning, it must at 

least be grounded in technical meaning. Not every-

thing goes with software. Video poker is not video 

backgammon. A smart contract is not a potato-salad 

recipe. We can argue over whether a website allows or 

prohibits access to a file, but both of these arguments 

presuppose the possibility that such questions about 

software can be answered at all. An ordinary video-

poker wager produces a clear win or loss, which is to 

say that sometimes, in fact most of the time, technical 

meaning does determine legal meaning.13 

The problem with naive functional meaning is that it 

is committed to the actual effects a program has when 

run, whether those effects are right or wrong. To im-

prove on it, we must find a way to recognise and iso-

late cases in which a program has somehow gone 

wrong, to keep the program’s meaning from going 

https://www.techpolicy.com/Grimmelmann_ComputerCrimeLawGoesToCasino.aspx
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down with the ship. In other words, we require a the-

ory of program correctness: meaning equals effects 

only when the program executes correctly according 

to an externally specified standard. 

Programming-language 
specification 

Fortunately, computer science has a theory of correct-

ness via specification: indeed, it is the conceptual 

foundation on which the entire discipline is built. By 

specifying precisely what a program is expected to do, 

programmers can treat any actual execution that de-

viates from the specified expectation as incorrect, 

whose effects can be disregarded. Indeed, with a 

proper specification, there is a sense in which actual 

execution becomes unnecessary. Instead, the pro-

gram’s meaning can be defined in terms of the effects 

it would have on a properly functioning computer that 

performs according to the specification.  

Hardware and software as abstractions 

Everyone who has ever worked with computers knows 

that computers do not always work. One way in which 

computers can fail is that, just like any other physical 

device, they malfunction. Just as screwdrivers some-

times slip, gears sometimes break and engines some-

times lock up, computers sometimes go wrong even if 

perfectly programmed. A stray cosmic ray can cause a 

bit in memory to flip from 1 to 0 or 0 to 1. A power 

surge can cause a computer to crash. Semiconductor 

chips have manufacturing defects, rats chew through 

wires and hard drives wear out. These are simply facts 

of life to be managed. Computer and software 

 
 
14 See generally David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture: ARM Edition (Morgan 

Kaufmann Publishers 2015).  

engineering are disciplines dedicated to systemati-

cally overcoming the fallibility of physical hardware. 

The central idea of computer science is a response to 

this problem: modelling computers as mathematical 

abstractions. An idealised ‘stored-program computer’ 

consists only of a memory unit which contains numer-

ical data and a processor that can carry out very sim-

ple instructions, like ‘add numbers x and y’.14 The pro-

cessor fetches an instruction from the memory unit 

along with any data the instruction needs, then carries 

out the instruction. New values can be written back to 

the memory and an instruction can designate what lo-

cation in the memory holds the next instruction to be 

executed.  

The stored-program computer model is artificial. But 

it occupies an appealing middle ground. On the one 

hand, it is a faithful model of actual real-world com-

puters: although they are vastly more complicated, 

their basic operations are faithfully represented at an 

abstract level as stored-program computers. On the 

other hand, stored-program computers can them-

selves be elegantly modelled by simple mathematical 

abstractions like finite-state machines, Turing ma-

chines and the lambda calculus. Thus, they provide a 

bridge between actual computers in all their messy 

complexity and clean, well-behaved mathematical 

models. 

The stored-program computer model has a number of 

important features. First, it abstracts away from irrele-

vant physical details. It does not matter whether the 

voltage level in a transistor is 1.49 volts or 1.51 volts: 

both will be regarded as simply representing a zero. 

This is the key move that simplifies the immense com-

plexity of reality to the point where it is theoretically 
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tractable. Second, it abstracts away from specific 

hardware. Two Intel chips may have subtle manufac-

turing differences but they ought to be functionally 

identical as far as the model is concerned. Indeed, so 

should an Intel chip and an AMD chip implementing 

the same instruction set. The actual hardware is irrel-

evant; only its behaviour on an abstract level is rele-

vant. In theory, you could build a stored-program 

computer out of water wheels or Tinkertoys. Third, it 

abstracts away from faulty hardware. The memory 

chip hit by a cosmic ray deviates from the correct be-

haviour of a memory chip. Chip architects and engi-

neers will work to produce chips that do not suffer 

such faults and software engineers will work to write 

programs that can detect and fix them but all of this 

work is so that programmers working with these chips 

can ignore the possibility of cosmic-ray bit flips (most 

of the time). The mathematical idealisation of the chip 

is free from these physical risks entirely and program-

mers spend most of their time working with the ideal-

isation. 

Another feature of the stored-program computer 

model is a little subtler. It is a general-purpose com-

puter. By putting different instructions in the com-

puter’s memory at the outset, it is possible to make the 

computer carry out different functions. Unlike a spe-

cial-purpose device which is designed to compute a 

single function, like ‘find the square root of a number’, 

a general-purpose computer can compute any func-

tion for which it is given suitable instructions. Or, in 

more familiar terminology, it can be ‘programmed’.  

This, then, is the source of the distinction between 

hardware and software. A general-purpose device, the 

hardware, is a physical system with physical proper-

ties. It can be programmed by loading it with specific 

instructions, the software. The actual line between 

hardware and software is vague and flexible; today it 

is easy to find examples in which each can and often 

does take on jobs usually associated with the other. 

But the distinction itself is central to modern com-

puter science. It allows programmers to work with 

software as text: sequences of symbols, abstracted 

away from the specific machines on which they will 

run and from the specific media on which they are 

stored. It also allows us as theorists to work with soft-

ware as text and to focus on what that text communi-

cates. 

Programming language semantics 

Now that we have isolated programs as texts in our de-

scription of software, we can confront the question of 

how a program comes to have a specific and specified 

meaning. It is all well and good to say that a program-

mer can write the Python program 

2 ** 3 

but what does this program do? In one sense the an-

swer is trivial. Any competent Python programmer is 

able to say that this program yields the value 8. But in 

a deeper sense, this answer just raises further ques-

tions. Why is it that all Python programmers agree? 

What had to take place for this remarkable uniformity 

to be possible? 

A descriptivist might say that the pattern of regularity 

in the programmers’ answers is itself the only relevant 

fact; there is nothing further to be posited or ex-

plained. But while this works as a theory of natural 

language — language consists of usage norms — it 

fails as a theory of programming languages. I could sit 

a total novice down at a keyboard, have them type  

2 ** 3 in a Python interpreter and ask them to report 

back on what happens. This person who has never 

programmed before, who does not ‘speak’ Python and 

who has no knowledge whatsoever of what the symbol 

** means or does, will nonetheless still report back 



CRCL 1(3): Code-driven Computational Law  2023 

8 

that the interpreter prints ‘8’. So there is apparently a 

fact about what 2 ** 3 means in Python that is inde-

pendent of the usage habits of Python programmers. 

The meaning of a Python program inheres at least in 

part in Python, not just in programmers’ minds. 

A prescriptivist might then argue that Python defines 

what Python programs mean and that the program-

mers’ usages and expectations are irrelevant. But 

where did ‘Python’ come from? In 1917, long before 

computers and long before Python, 2 ** 3 had no 

meaning as a Python program. Or what if I modify my 

Python interpreter (it is an open-source program, af-

ter all) so that ** is a multiplication operator rather 

than an exponentiation operator, in which case my in-

terpreter will print 6 instead of 8? So something out-

side of the interpreter itself must determine the mean-

ing of this program. (Once again, ‘whatever the pro-

gram does’ is an incomplete answer.) 

The answer to both questions is that programming 

language semantics is both a social and technical pro-

cess: people agree about the meanings of programs 

not directly, by saying ‘expression E in programming 

language L means M’ but indirectly, by codifying their 

agreements in technical processes that assign mean-

ings to classes of expressions in a programming lan-

guage.15 The community of Python programmers 

agree on what Python is, and the meanings of specific 

Python expressions (such as 2 ** 3) follow from that 

agreement.16 

 
 
15  See generally Donald A. Mackenzie, Mechanizing Proof: Computing, Risk, and Trust (MIT Press 2001). 
16 See generally Stanley Fish, ‘Interpreting the “Variorum”’ (1976) 2 Critical Inquiry 465, 483 (defining an ‘interpretive com-

munity’ as ‘those who share interpretive strategies not for reading (in the conventional sense) but for writing texts, for con-

stituting their properties and assigning their intentions’).  
17 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith and Gavin Bierman, The Java® Language Spec-

ification (Java SE 17th edn 2021). 
18 Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley and Daniel Smith, The Java® Virtual Machine Specification (Java SE 

17th edn 2021). 

There are four broad classes of techniques program-

mers use to express their agreement on program-

ming-language semantics: informal natural-language 

descriptions, formal mathematical semantics, refer-

ence implementations and test cases. It is worth look-

ing at them each in more detail. I will refer to them col-

lectively as specification. 

Natural-language descriptions 

A description can be a few lines in a README file tell-

ing a user what a program does in very general terms. 

But others are more ambitious: they strive to describe 

a language in sufficient detail such that one could cre-

ate an implementation by reading the description and 

making the implementation conform to it. Java, for ex-

ample, has an 848-page language reference,17 supple-

mented by a 624-page virtual machine reference.18 

These detailed descriptions are primarily written in 

natural language, generously sprinkled with mathe-

matical notation and technical terms of art. Here is an 

example from the 2,279-page Python Library Refer-

ence: 

Math.atan2(y, x) 

Return atan(y / x), in radians. The result is 

between –pi and pi. The vector in the plane 

from the origin to point (x, y) makes this an-

gle with the positive X axis. The point of 

atan2() is that the signs of both inputs are 

known to it, so it can compute the correct quad-

rant for the angle. For example, atan(1) and 
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atan2(1, 1) are both pi/4, but atan2(-1, 

-1 ) is -3*pi/4.19 

To understand the expected meaning of atan2(1) in 

Python, a programmer would need to know enough 

mathematics to know what the ‘arc tangent’ is. To 

write their own implementation of Python that in-

cludes this function, they would also need to know 

enough about numerical methods to compute it accu-

rately. 

Formal mathematical semantics 

A second way to achieve consensus on the meaning of 

programs in a given programming language is to give 

a formal semantics for the language, which identifies 

programs with abstract mathematical objects and 

states rigorous theorems about those mathematical 

objects.20 For example, the following rule defines the 

semantics of an add operator in a hypothetical pro-

gramming language by adding (+) the values (v1 and 

v2) of the expressions (e1 and e2) that add operates on. 

𝑒1 → 𝑣1 𝑒2 → 𝑣2
add 𝑒1𝑒2 → 𝑣1 + 𝑣2

 

Formal semantics are not typically intended for every-

day use by programmers. Instead, they are useful in 

establishing desirable properties of programs and im-

plementations. One use is in establishing that a lan-

guage as a whole has some nice feature, e.g. that pro-

grams written in it will never crash because they tried 

to access a forbidden part of memory. These proofs 

depend on the formal semantics of the languages to 

which they apply. Another use is to automate the pro-

cess of looking for possible bugs in a code fragment — 

or proving that it can contain no bugs of a given type 

— a process that depends on having a good formal se-

mantics for the language in question. And a third is to 

 
 
19 Guido van Rossum and the Python Development Team, The Python Library Reference (Release 3.10.1, 16 December 2021). 
20 See generally e.g. Glynn Winskel, The Formal Semantics of Programming Languages: An Introduction (MIT Press 1993).  

support the process of writing good implementations 

of the language: a well-done formal semantics can 

achieve high standards of unambiguity in describing 

correct program behaviour. 

Reference implementations 

A third way for programmers to express their agree-

ment about a programming language is for them to 

agree on a specific instantiation of that programming 

language, a reference implementation. The reference 

implementation is a version of the interpreter that ex-

ecutes programs in the language (or a compiler that 

translates them into executable forms, or a translator 

that transforms them from one language to another 

with its own agreed-upon semantics). The community 

of programmers agrees to treat the reference imple-

mentation as authoritative as to the meaning of pro-

grams in the language: whatever the reference imple-

mentation does is considered the correct behaviour. 

Other implementations are possible, and for many 

languages are quite common, but when another im-

plementation differs in its behaviour from the refer-

ence implementation, the other implementation is 

considered to be the buggy one. This is an appeal to 

‘whatever the program does’, but with a crucial differ-

ence: it is an appeal to a socially agreed program, and 

therefore it excludes my idiosyncratic modified ver-

sion of Python. 

This is a common strategy, so common in fact that 

programmers do not always realise they are relying on 

it. Python does not have an official reference imple-

mentation but it does have one so widely used that it 

is de facto the reference implementation, called CPy-

thon. It is open-source software, written in a mixture 

of Python and C, and if you are curious, you can 

browse its source code at 
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<https://github.com/python/cpython>. If you install 

‘Python’ on your computer, you are likely to get a ver-

sion of CPython and many other Python implementa-

tions are modified versions of CPython. When I teach 

a programming course in Python, we spend time in 

the first week making sure that every student has ac-

cess to the same version of CPython. The result is that 

I can tell students in class, ‘open up Python and type 

in (...)’ and be confident that everyone in the class will 

see the same result. This is, on a smaller scale, the kind 

of consensus that agreement on a reference imple-

mentation provides. 

Test cases 

A fourth way of establishing consensus on program 

meaning is to describe the behaviour of a language us-

ing test cases. A test case for a program is an input to-

gether with the expected results of running the pro-

gram on that input. Because test cases are examples, 

they technically do not say anything about what pro-

grams should do on other inputs. It is very rare to 

specify a language’s semantics entirely via test cases. 

Instead, test cases are used in conjunction with other 

approaches. For one thing, test cases can help make 

informal descriptions and formal semantics more in-

telligible to human readers by providing concrete ex-

amples of abstract rules. (The description of atan2 

above has three test cases embedded in the English 

text.) For another, test cases can be used as double 

checks for languages specified via these other meth-

ods: if the language is implemented correctly, then 

these test cases will be correctly computed. An imple-

mentor who sees a test case fail knows they must have 

made a mistake somewhere.21 Test cases can even be 

used to verify that a reference implementation 

 
 
21 See Kent Beck, Test-Driven Development by Example (Addison-Wesley Professional 2002). 
22 See generally Randall Bryant and David O’Hallaron, Computer Systems: A Programmer’s Perspective (3rd edn Pearson 2015) 

(describing the low-level abstractions of a computer).  

conforms to itself. A ‘regression test’ is a test that a pro-

grammer runs after making some changes to their 

program: if the results of the test change, it is an im-

mediate warning that something in the program’s be-

haviour has changed. On the assumption that the pro-

gram was working correctly before the change, the 

programmer immediately knows that it is now work-

ing incorrectly. 

Literal functional meaning 

However achieved, specification of a programming 

language provides a new way to ascribe meaning to a 

program written in that language. Consider two cases: 

in one, a bit flips in a computer’s memory as the result 

of an addition specified by a program, while in the 

other, a bit stored in the same physical memory loca-

tion flips as the result of being hit by a cosmic ray. Na-

ive functional meaning had no way to distinguish 

these two cases, but now that we have a specification 

for the relevant programming language — in this case, 

the low-level binary language of machine code that 

the physical computer implements — there is an ob-

vious difference between the two.22 Only the first re-

sult is consistent with the specification, that is, with 

the ideal stored-program computer that the physical 

computer implements and approximates.  

The same reasoning applies to other cases where the 

actual computer and the idealised computer differ: 

when a physical computer has a manufacturing de-

fect, or when there is a bug in the software toolchain 

that turns a programmer’s source code into executa-

ble machine code, or when the programmer executes 

their code on an idiosyncratic non-standard system. 

https://github.com/python/cpython


CRCL 1(3): Code-driven Computational Law  2023 

11 

In each case, reality departs from the model, but be-

cause the model defines the standard of correctness, 

it is reality that is wrong. 

Specification, then, provides a new interpretive strat-

egy. The literal functional meaning of a program is the 

effect that a program would have when executed on a 

computer that correctly implements the specification 

of the programming language in which the program is 

written. Literal functional meaning retains much of 

naive functional meaning’s virtue in minimising am-

biguity: the meaning of a program is simply what the 

specification says. 

While naive functional meaning is tied to specific ex-

ecutions of a program on specific systems on specific 

occasions, literal functional meaning abstracts away 

from particular executions, computers and occasions. 

In doing so, it avoids the pitfalls of following a specific 

broken computer into the abyss; it is not subject to 

problems of hardware malfunctions and idiosyncratic 

variations in computer systems. Because of this ab-

straction, literal functional meaning is a genuine the-

ory of the meaning of programs as texts, rather than of 

computers as physical machines. 

Literal functional meaning is in a sense an extreme 

version of natural-language literalism.23 It is both sim-

ple and rigorous. Although not quite as simple as na-

ive functional meaning, it is simple because of how 

comparatively little it requires from judges and other 

legal interpreters. Find an implementation of the rele-

vant programming language that the relevant tech-

nical community recognises as correctly implement-

ing the language specification. Then run that imple-

mentation and see what it does. And it is rigorous 

 
 
23 See François Recanati, Literal Meaning (Cambridge University Press 2004). 
24 See John David Ohlendorf, ‘Textualism and the Problem of Scrivener’s Error’ (2011) 64(1) Maine Law Review 119. 
25 See Thomas Schoch, ‘computer/programs/useless/misc/polyglot’ <https://retas.de/thomas/computer/programs/use-

less/misc/polyglot/index.html> accessed 12 April 2023.  

because it leaves so little wiggle room. Even fairly pure 

variants of literalism have always included escape 

hatches like the doctrine of scrivener’s error: suffi-

ciently obvious mistakes in a text will be corrected on 

the (almost always fictional) theory that the mistake is 

the product of a later copyist’s mistranscription.24 Lit-

eral functional meaning, for better or worse, has no 

such outs. 

Consensus and correctness 

Literal functional meaning’s freedom from the physi-

cal comes at a steep price. Naive functional meaning 

is tied to an actual execution: a program’s effects and 

hence its meaning can be determined by examining a 

specific physical computer, whose state can be objec-

tively observed (insofar as anything can be). But literal 

functional meaning depends on an abstraction and 

there is no guarantee that any actual computer cor-

rectly implements the language specification that de-

fines the meaning of a program. The program must be 

interpreted in light of the specification, which re-

quires knowing what specification to interpret it 

against. 

Programs are not self-defining. We can give them a 

meaning only with respect to a specific programming 

language. Consider ‘polyglot’ programs, which are 

valid programs in multiple different languages. The 

program below, for example, is valid in six different 

programming languages (Perl, C, the Unix shell, 

Brainfuck, Whitespace, and Befunge).25 Its semantics 

are well-defined only once one chooses one of these 

six languages in which to interpret it as a program. 

https://retas.de/thomas/computer/programs/useless/misc/polyglot/index.html
https://retas.de/thomas/computer/programs/useless/misc/polyglot/index.html
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This is an example of a deeper problem. It is not 

enough for literal functional meaning to say that a 

program is written in a given language. To interpret a 

program, one must also know the contents of that lan-

guage’s specification. This is a conventional fact, not a 

natural one: it depends on the practices of the people 

who use the language.26 All four methods of program-

ming-language specification described above — ref-

erence implementations, informal descriptions, for-

mal semantics and test cases — are fundamentally so-

cial processes. 2**3 in Python returns 8 not because it 

has to in any metaphysical sense, but because a com-

munity of Pythonistas agreed that it should. They 

agreed that ‘Python’ is defined by what the Python 

Language Reference says and what CPython does. 

What CPython does on a given input is almost entirely 

insulated from social processes, but the underlying 

agreement that what CPython does is constitutive of 

Python is not.  

The source of meaning for computer programs, then, 

is consensus within a technical community: the lan-

guage maintainers who write implementations of a 

programming language, the programmers who write 

programs in that language and the users who run 

those programs using the implementations. Through 

a combination of implementations, descriptions, se-

mantics and test cases the members of that commu-

nity agree in broad strokes about a process for extract-

ing functional effects from the text of programs. Com-

munity members instantiate that process on different 

 
 
26 See Andrei Marmor, Social Conventions: From Language to Law (Princeton University Press 2009). 

computers, using different implementations, and so 

on. Most of the time, running the same program on 

these different instantiations will produce (what com-

munity members agree is) the same result. This is how 

the meaning of programs is fixed. 

More precisely, to say that some combination of refer-

ence implementation, description, formal semantics, 

and test cases is the specification S for a programming 

language L is to say that the community of program-

mers and users of L have agreed that the correct be-

haviour of programs in L is defined by S. Even more 

precisely, they have agreed that S provides a general, 

effective, and authoritative procedure for determining 

the effects of any program P that is written in L. If ap-

plying S to P yields effects E, then P means E in L, full 

stop, end of story. You can assert that P has some other 

effects E’ by explaining that P is actually a program in 

some other language L’. You can try to persuade the 

relevant community to adopt some other specifica-

tion S’ for L. But you cannot accurately assert that P, 

regarded as a program in L, yields E’. It does not. The 

community has agreed otherwise and the commu-

nity’s consensus does not support your idiosyncratic 

meaning. 

Breakdown 

The dependence of literal functional meaning on con-

ventional facts has real consequences for interpreta-

tion. One is that it opens up a gap through which 

# define x u /*      v 
# :::::::::::::::::::>>>>>>>$$$a"muroftih"#[>:#,_@] 
eval 'echo "hitforum";exit';sub echo { print "@_\n"} 
__END__>++++++++++>++++++++++[>+++++++++++>++++++++++ 
+<<-]>------.+.>++++++.<---.+++++++++.>--.+++ 
.<--.<<. */ 
main() { printf ("hitforum\n"); } 
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ambiguity can re-enter.27 Reference implementations 

can contain bugs; specifications can contain ambigu-

ous or vague phrases; even formal semantics can con-

tain mistakes (just as mathematical proofs can). Try-

ing to resolve these ambiguities can introduce others. 

If you provide a specification for a new language, and 

then try to iron out any glitches in the specification by 

also providing a reference implementation, the ques-

tion will naturally arise: which controls when the two 

of them differ? The same problem arises if one gives a 

formal semantics and a natural-language description 

of the formal semantics, and so on. Under many cir-

cumstances, these ambiguities will remain latent. For 

all practical purposes, the meaning of 2**3 in Python 

is completely settled, despite the almost certain exist-

ence of ambiguities elsewhere in the Python specifi-

cation. But they cannot be eliminated entirely. The 

crooked timber of humanity is visible even in the code 

we write. 

Another way in which literal functional meaning can 

break down is that programming-language specifica-

tions are often incomplete. Web pages can look differ-

ent in Firefox and Chrome because these two brows-

ers implement the Cascading Style Sheets language 

standard with slight differences.28 Exhibiting a CSS 

program (technically a ‘style sheet’) is not sufficient to 

resolve the ambiguity about how it will appear on the 

user’s screen without also specifying what browser the 

user is running and other details of the execution en-

vironment. The CSS ‘language’ is actually a large fam-

ily of closely related languages implemented by differ-

ent browsers in different versions. A complete 

 
 
27 See generally Terry Winograd and Fernando Flores, Understanding Computers and Cognition: A New Foundation for Design 

(Ablex 1986). 
28 See ‘Can I Use’ <https://caniuse.com> accessed 12 April 2023 (documenting browsers’ different support for Web standards). 
29 See Georg Brandl and Serhiy Storchaka, ‘Python Enhancement Protocol 535 — Underscores in Numeric Literals’ (Feb. 10, 

2016). 
30 See James Grimmelmann, ‘All Smart Contracts Are Ambiguous’ (2019) 2 Journal of Law & Innovation 1.  

specification of a programming language often must 

include context-specific details. 

Literal functional meaning can also change over time, 

simply because programming-language communities 

collectively decide to change the specification of a 

language. If everyone agreed tomorrow that ‘Python’ 

should be defined differently, then it would be. For ex-

ample, Python versions 3.6 and above allow the use of 

underscores in numbers as a kind of visual separator, 

for example ‘1_000_000’ for one million, which is eas-

ier to read than ‘1000000’.29 Previous versions disal-

lowed underscores in numbers, so a program contain-

ing ‘1_000_000’ will produce an error if run in Python 

3.5.2 but will work in Python 3.6.1. These changes, al-

most by definition, create ambiguities about what ‘Py-

thon’ does on particular inputs; one must specify a 

version number to resolve the ambiguity. 

If one is confronted with a ‘Python’ program and 

asked what it means, the only sensible way to answer 

the question is to look to the specific setting in which 

the program is to be used and to the usage patterns of 

the community running similar software, to deter-

mine what version they are using, and how they un-

derstand it to be defined.30 Literal functional meaning 

commits us to asking empirical questions about social 

facts. 

Ordinary functional meaning 

Literal functional meaning is not a complete theory of 

software interpretation either. The process of filling its 

https://caniuse.com/
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most obvious gap bears a striking resemblance to the 

process by which we developed it in the first place. 

Just as naive functional meaning lacks a satisfying 

treatment of hardware malfunctions — cases in which 

the computer fails to function as expected — literal 

functional meaning lacks a satisfying treatment of 

bugs — cases in which the program fails to function as 

expected. In a malfunction, the computer diverges 

from its specification; in a bug, the program diverges 

from its intended functionality. Just as naive func-

tional meaning treats the computer’s actual behaviour 

as authoritative even when we know better about 

what the computer should have done, literal func-

tional meaning treats the program’s behaviour ac-

cording to the language specification as authoritative, 

even when we know better about what the program 

should have done. Just as we developed literal func-

tional meaning by looking closely at the source of our 

knowledge about what the computer should have 

done, we can develop a theory of ordinary functional 

meaning by looking closely at the source of our 

knowledge about what the program should have 

done. Even the price we pay is similar: ordinary func-

tional meaning will have to take on board additional 

conventional facts about the practices of program-

mers and users. 

Bugs 

Suppose that I am writing a program to draw an octa-

gon. But when I run my program, an eight-pointed 

star appears on the screen. My code has a bug. So I 

look closely at the code and I find that I have gotten 

the math wrong: at each corner, the line should turn 

by 45 degrees, not 135 degrees. So I delete 135 and re-

place it with 45. Now, when I run my program again, 

an octagon appears. I have fixed the bug. 

The literal functional meaning of my original program 

was to draw an eight-pointed star. The literal func-

tional meaning of my revised program was to draw an 

octagon. Two programs, two meanings. From the 

point of literal functional meaning, these two are 

equally valid. But from my point of view as a program-

mer, the two are not equally valid: one is buggy and 

one is correct. 

The concept of a bug presumes a distinction between 

the actual and intended behaviour of a program. Pro-

gram P actually does E but the programmer intended 

E’ and they can achieve it by changing the program 

from P to P’. There are many kinds of bugs. A program-

mer could type the wrong expression: ** instead of *. 

They could misunderstand how the language they are 

using works. They could misunderstand how the algo-

rithm they chose works. They could misunderstand 

the problem they are trying to solve, fail to anticipate 

a possible user input, make an incorrect assumption 

about the world, misunderstand a library or API they 

relied on, miscommunicate with a colleague, forget 

what they were doing at a previous time and do some-

thing inconsistent with it, run the program on hard-

ware that violates their expectations for how it works 

or regret doing something they fully intended at the 

time, to name just a few. 

This list bears more than a passing resemblance to the 

list of ways to misspeak in a natural language. The dis-

tinction between actual and intended meaning, then, 

carries over from natural to programming languages. 

Just as a speaker might produce an utterance that their 

human audience understands differently than they 

intended, a programmer might produce a program 

that computers interpret differently than they in-

tended. The program has a determinate meaning in 

the programming language they are using; it is just not 

the meaning they were trying to express. As program-

mers can attest, this divergence between what a 
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program does and what you want it to do is common. 

Indeed, by some estimates programmers spend as 

much time debugging — i.e. trying to close this gap — 

than writing code in the first place.31 

Debugging is characteristic of programming but not of 

natural language. It is worth asking why. In conversa-

tions, and even to a significant extent in writing, peo-

ple detect and correct misstatements by noticing in-

congruities and through discussion. Computers, how-

ever, are ill-positioned to do either. Instead, error de-

tection and correction for programs is a matter of sec-

ond-best approaches. They can be coded to accept a 

wider range of inputs and make different assumptions 

about what the user might have meant: a spell-

checker with autocorrect is a simple example. But they 

still have to be programmed to do so; they lack (for 

now at least) the broad adaptability humans have in 

understanding the nuances of what a speaker might 

have intended.32 

Ordinary functional meaning 

Now it should be clear how literal functional meaning 

goes wrong in a normative sense when it deals with 

buggy code. It is oblivious to the knowledge that a rel-

evant community of programming-language users 

brings to the task about how the program is intended 

to function. It is precisely because technical commu-

nities are capable of recognising and fixing bugs that 

we can appeal to those abilities in constructing 

 
 
31 E.g. Chris Grams, ‘How Much Time Do Developers Spend Actually Writing Code?’ (The New Stack, 2019) <https://the-

newstack.io/how-much-time-do-developers-spend-actually-writing-code/> accessed 12 April 2023 (32% ‘Writing new 

code or improving existing code’ versus 31% ‘Code maintenance’ and ‘testing’).  
32  Cf. Karen E.C. Levy, ‘Book-Smart, not Street-Smart: Blockchain-Based Smart Contracts and the Social Workings of Law’ 

(2017) 3 Engaging Science, Technology & Society 1 (discussing why contracting parties may not want the literal exactitude 

of computer interpretation of software). 
33 See generally Brian G. Slocum, Ordinary Legal Meaning: A Theory of the Most Fundamental Principle of Legal Interpretation 

(University of Chicago Press 2015). 

another theory of program meaning, one that makes 

appropriate corrections for buggy code. 

The ordinary linguistic meaning of an utterance is the 

meaning that a reasonable audience would give it.33 

The audience, as competent speakers of the relevant 

language, make allowances for slips of the tongue, 

grammatical mistakes, confusions about word mean-

ings, and more. They attempt to reconstruct, as best 

they can, the meaning that the speaker intended to 

convey by means of the utterance. 

The audience for a program consists of the relevant 

technical community of programmers and users. And 

that technical community is familiar with the distinc-

tion between actual and intended program meaning; 

it expects (as a predictive matter) that programs con-

tain bugs. Sometimes, when looking at a program, 

readers can tell not just what it actually does, but what 

its programmer intended for it to do. Not all bugs are 

of this sort, but many are, and when programmers en-

counter one, they will reliably agree on what the actual 

programmer probably wanted. 

Thus, the ordinary functional meaning of a program is 

what reasonable people in the position of its program-

mer and knowing what they know would expect the 

program to do, if it were free of bugs. Ordinary func-

tional meaning is more prone to ambiguity than literal 

functional meaning — witness the old joke, ‘That’s not 

a bug, that’s a feature!’ — but it captures the collective 

https://thenewstack.io/how-much-time-do-developers-spend-actually-writing-code/
https://thenewstack.io/how-much-time-do-developers-spend-actually-writing-code/
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expectations and the collective wisdom of a technical 

community. 

Choosing an interpretive strategy 

To abuse the terminology of interpretation only 

slightly, naive functional meaning adopts the view-

point of a specific actual computer, however unrea-

sonable that computer’s interpretation may be. Literal 

functional meaning adopts the viewpoint of a reason-

able computer, where what is ‘reasonable’ is judged 

with reference to a community of programming-lan-

guage users. Ordinary functional meaning adopts the 

viewpoint of a reasonable programmer, where what is 

‘reasonable’ is judged with reference to a community 

of programmers and users. 

The choice between these interpretive strategies is not 

one that can be made in the abstract; it depends on 

one’s reasons for asking. Programming as a profession 

depends on adopting all three as needed, sometimes 

even simultaneously. Indeed, the very practice of de-

bugging is unintelligible without both literal and ordi-

nary theories of functional meaning. To debug a pro-

gram is to change its behaviour by changing its text. 

Without literal functional meaning, debugging would 

be unnecessary — the programmer already knows 

what the program is intended to do. Without ordinary 

functional meaning, debugging would be pointless — 

there is no reason to prefer one program text to an-

other. Only if a program can have both kinds of mean-

ings at once and the two can diverge does debugging 

make sense. Even naive functional meaning has a role 

to play. A programmer whose code is not working 

needs to be alert to the possibility that the problem is 

with their computer (naive and literal functional 

 
 
34 Morris (n 4) at 510. 
35 See James Grimmelmann, ‘Consenting to Computer Use’ (2016) 84 George Washington Law Review 1500.  
36  See ‘The Web Robots Pages’ <https://www.robotstxt.org> accessed 12 April 2023. 

meaning diverge) or with their code (literal and ordi-

nary functional meaning diverge). 

The same is true for legal interpreters of software. The 

choice between interpretive strategies is inextricably 

bound up with the normative goals of interpretation. 

Consider Morris and his CFAA conviction for misus-

ing programs like sendmail.34 The literal functional 

meaning of sendmail allowed him to install his worm 

program on computers, but its ordinary functional 

meaning did not. The court’s holding that he ‘did not 

use [sendmail] in any way related to [its] intended 

function’ is a choice for ordinary functional meaning 

— i.e. what a reasonable user would have known 

sendmail was ‘intended’ to do, not what it actually 

did.35 This choice was based on the court’s interpreta-

tion of ‘without authorisation’ in CFAA, and that inter-

pretation in turn implements Congress’s policy deci-

sion to deter the exploitation of bugs in programs like 

sendmail.  

But in other contexts, computer users need to be able 

to rely on the exact behaviour of a program, without 

having look behind its literal text to guess what its cre-

ator intended. If you misspell Disallow as Dsallow in 

the robots.txt file that tells search engines which di-

rectories of your website they should not index, search 

engines are free to index those directories.36 Even 

though anyone who examines your robots.txt file 

would be able to tell that Dsallow is a typo, it would be 

normatively unreasonable to expect every search en-

gine operator to program their indexing software to 

recognise all of the possible misspellings of Disallow. 

This is a choice for literal functional meaning over or-

dinary functional meaning. 

https://www.robotstxt.org/
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Conclusion 

Thinking about software interpretation as though it 

were legal interpretation may seem artificial, but it has 

many applications.  

▪ First, as discussed above, sometimes it is legal in-

terpretation: lawyers and judges are placed in po-

sitions where they must determine the legal effects 

of software and thinking of software as a meaning-

bearing text provides a coherent and principled 

way of doing so. Other contexts where similar is-

sues arise include copyright,37 the First Amend-

ment38 and smart contracts.39 

▪ Second, it sheds light on computer science. Legal 

interpretation is a pragmatic enterprise, in a way 

that is a good fit for the pragmatism of program-

ming. Using legal theory’s conceptual toolkit to 

talk about software engineering helps us under-

stand the linguistic, social and normative aspects 

of technical processes, from standard setting to 

software testing. 

▪ Third, it sheds light on law. Literal functional 

meaning is and is not like literal natural-linguistic 

meaning; ordinary functional meaning is and is 

not like ordinary legal meaning. Software interpre-

tation gives legal interpretation a mirror with 

which to consider itself from a new and different 

angle. 

And this is just the beginning. We have not yet consid-

ered the meanings that programs convey to their users 

directly: a webpage with the text ‘ACCESS 

 
 
37 See e.g. Pamela Samuelson, ‘Functionality and Expression in Computer Programs: Refining the Tests for Software Copyright 

Infringement’ (2016) 31 Berkeley Technology Law Journal 1215. 
38  See e.g. Lee Tien, ‘Publishing Software as A Speech Act’ (2000) 15 Berkeley Technology Law Journal 629. 
39 See e.g. Jason G. Allen, ‘Wrapped and Stacked: “Smart Contracts” and the Interaction of Natural and Formal Language’ 

(2018) 14 European Review of Contract Law 307. 

PROHIBITED’ means something different than a page 

that refuses to load with an HTTP 403 error. Nor have 

we considered the meanings that programmers can 

hide in the source-code comments of their programs 

that have no functional consequences whatsoever. All 

of these, and more, are necessary for a full legal under-

standing of software interpretation. The work awaits. 
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A reply: On the need for program contracts 

Marieke Huisman • University of Twente, m.huisman@utwente.nl   

I enjoyed reading this paper, in particular because it 

discusses a field that I know very well from a com-

pletely different perspective. There are several points 

that I would like to respond to. 

First of all, the paper introduces several ways to look 

at the meaning of a computer program. However, in 

computer science, the meaning of a program is a well-

defined concept: it is what is defined as the formal se-

mantics of the program. Formal program semantics 

defines the behaviour of a program in terms of a math-

ematical object. All other ways that can be used to de-

scribe the meaning of a program, need to be equiva-

lent to, or can be derived from this formal semantics. 

If there is a discrepancy between those, then normally 

the formal semantics is considered to be the ground 

truth.  

In his paper, James Grimmelmann takes a rather basic 

view of what a computer program is. Modern software 

is becoming very complex, however, which has an im-

pact on the meaning of the program. I will describe 

several of these additional complexities. 

The paper never mentions explicitly that most com-

puter programs take some input, and thus the mean-

ing of the program depends on the input that is pro-

vided. When we take this into account, we see that we 

have to think about questions such as: 

▪ what are legal inputs for the program? 

▪ what will the program do if it is called with illegal 

input? 

Capturing this is part of describing the meaning of a 

program. 

Moreover, modern programming languages have ad-

ditional control features like exceptions and support 

for parallelism. Exceptions are a way to handle excep-

tional situations, e.g. if a program is called with illegal 

input, if internally a computation goes wrong, or if the 

program runs out of memory. When describing the 

meaning of a program, this means that different 

modes of termination have to be considered. In par-

ticular, if a program does terminate in an exceptional 

state, is this considered acceptable behaviour or not? 

Moreover, if a program supports parallelism, there 

might be multiple different behaviours, all of which 

are acceptable. In a parallel program, multiple com-

putations happen in parallel, and no guarantees are 

given about the respective speed of these individual 

computations. For example, suppose that we have a 

variable x, whose initial value is 0, and which is shared 

by two parallel computations. Now we could have the 

following behaviour: one computation first reads the 

current value of x, and then adds 4 to it and stores that 

in x again, while a second computation first reads x, 

then multiplies it by 4 and then stores the result in x. 

Depending on which computation happens first, the 

final value of variable x can be either 4 or 16. When 

describing the meaning of the program, we have to 

capture the fact that both outcomes are possible and 

acceptable. This example also illustrates why the 

meaning of a program can never be described by look-

ing at a single execution only. Moreover, looking at 

multiple executions is usually insufficient for parallel 
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programs: on specific hardware, one computation 

might always be executed first, resulting in one spe-

cific behaviour, but if the program is later executed on 

different hardware, it might suddenly exhibit a differ-

ent behaviour. Thus, the behaviour of such a parallel 

program should be captured independently of the 

specific hardware on which the program is executed. 

The paper ends with a discussion of buggy programs, 

and states that a program with a bug might not capture 

the intended meaning of the program. This is an im-

portant problem, which receives a lot of attention 

within computer science, and in particular within the 

field of formal methods. The idea is that we should de-

couple what the program is computing from how it is 

computing it. What is computed is considered to be 

the program specification. Ideally, this is described in 

a formal language (although it happens frequently 

that the program’s intent is captured only in informal 

documentation), while how it is computed is de-

scribed as the program implementation. Formal 

methods are concerned with establishing a formal re-

lationship between the two, e.g. providing a guarantee 

that a program correctly respects its specification. This 

is of course closely connected to the program seman-

tics, because the guarantees have to be provided for all 

possible program behaviours. 

In my own research, the intended behaviour of a pro-

gram is typically described as a program contract, 

which consists in essence of a precondition and a 

postcondition for a program. The precondition speci-

fies what the legal inputs are for the program, while 

the postcondition specifies what guarantees are pro-

vided by the program. If the program is correct, it 

means that for all legal inputs the implemented pro-

gram will achieve the properties specified in the post-

condition. This formalism supports a separation of 

concerns: any other program that uses this program 

does not have to understand the implementation of 

the program, but can rely on everything that is speci-

fied in the contract. Contracts also provide an answer 

to the legal question of what the meaning of a program 

is. The intended meaning is described as the contract, 

and this is what users of the program should be able 

to rely upon. It is the programmer’s responsibility to 

guarantee that the program implementation respects 

the program’s contract. 

I believe that to continue the work on legal interpreta-

tion of software, these program specifications have to 

be taken into account as well. This will also provide an 

incentive for programmers to actually describe the in-

tended meaning of their programs as a formal specifi-

cation, rather than in informal documentation only. A 

major advantage of writing down the formal specifica-

tion is that it becomes possible to use tools to check 

that the program respects its specification. This will 

help to increase the quality of programs, and to reduce 

the number of software bugs that occur. 
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Author’s response 

James Grimmelmann

Marieke Huisman’s thoughtful reply makes a number 

of good points that illustrate why the analogy between 

software interpretation and legal interpretation is so 

fruitful. 

First, she mentions that ‘most computer programs 

take some input’, so that the output is a function of the 

input. In a similar way, legal rules are applied to many 

different fact patterns, so that the effects of a rule de-

pend on the facts of a particular case. In this way, both 

programs and legal rules define functions from con-

texts to consequences. 

Second, she observes that programs can be written 

with control features such as exception handling, so 

that exceptional situations can still lead to well-de-

fined outputs. Here too there is a useful parallel to law. 

Many contracts, statutes, and other legal texts are writ-

ten with savings clauses, which explain how the re-

mainder of the text should be applied if part of it is 

held to be illegal or unenforceable. 

Third, Huisman notes that programs can use parallel-

ism such that different executions yield different re-

sults where ‘both outcomes are possible and accepta-

ble’. Here the contrast with law is striking and illumi-

nating. This kind of nondeterminism is usually con-

sidered problematic whenever it occurs in law, even 

though it seems to be an inevitable characteristic of 

any legal system operated by humans. She succinctly 

reminds us that nondeterminism is not a uniquely hu-

man characteristic; it is so pervasive in computing 

that there are extensive formalisms to describe it. 

Fourth, and most profoundly, Huisman explores the 

use of formal methods to ‘guarantee that a program 

correctly respects its specification’. This is a powerful 

idea, because, in her words, it enables us to ‘decouple 

what the program is computing from how it is compu-

ting it.’ From the perspective of a programmer using a 

library, only the specified interface and not its imple-

mentation matters. 

Huisman suggests that these program contracts could 

serve as ‘an answer to the legal question of what the 

meaning of a program is’. This is a delightful observa-

tion. The use of the same word to describe a program 

‘contract’ and a legal ‘contract’ gets at a deeper truth: 

they both involve a promise to behave in a particular 

way. I think that she is right, and in many cases the 

technical commitments made by the creator of an in-

terface about its parameters and return values will be 

the best evidence available to a court as to what that 

code was intended to do, and what its users expect it 

do. 

The final fascinating issue she raises, which I can 

touch on only briefly here, involves the use of formal 

verification to improve program quality. For all that I 

have emphasized the similarities between programs 

and legal texts as the products of human communica-

tion and consensus, this difference remains. We know 

how to run verification tools against software, and 

how to reduce or even eliminate certain kinds of er-

rors in programs. We have only the faintest idea of how 

such a thing might even be feasible in law — and 

much to learn from computer scientists about how to 

tackle such a task. 
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