Software

EO Softwara 5

A’ Trade Secref 5
Barr-Mullin, Inc. v. Brownind 6
Silvaco Data Systems v. Intel Corp] 6
IB Patenf 10
1 Subject Mattell 10
b Then 10
[n re Bernharli 10
Inre Alappad 11

State Street Bank & Trust Co. v. Signature Finan-l
Cial GrOUr . . o o oo 14
b ONOW. . o oot 15
Alice Corp. v. CLS Bank Int’d 15
MCcRO, Inc. v. Bandai Namco Games America Inc] 21
Synopsys, Inc. v. Mentor Graphics Corp| 26
|2 Procedures 31
Williamson v. Citrix Online, LLQ 31

Mark A. Lemley, Software Patents and the Re-l
turn of Functional Claiming 33
B ODbVIOUSNESSo ... 34
Apple Inc. v. Samsung Electronics Co., Ltd] R %
b Copyright 39
1 SubjectMatterl 39
Apple Computer, Inc. v. Franklin Computer Corpl 39
Adobe Systems Inc. v. Southern Software Inc) . . . 41

Whelan Associates, Inc. v. Jaslow Dental Labom-l
|tor1/, Inc] 43
Computer Associates Intern., Inc. v. Altai, Inc] .. 44
Oracle America, Inc. v. Google Inc) 49
Oracle America, Inc. v. Google Inc| 56
Tetris Problem 62
|2 Defenses 62
Copyright Act § llﬂ 62
Sega Enterprises Ltd. v. Accolade, Inc] 63
Universal City Studios, Inc. v. Corleyf 65

ID Trademarklo..... 67

SOFTWARE

|Apple Inc. v. Samsung Electronics Co., Ltd] e

IE DesignPatentl
Michael Risch, Functionality and Graphical Userl

|lnterface Design Patentd

Smartphone Problem|

10

Software

The programmer, like the poet, works only slightly re-
moved from pure thought-stuff. He builds his castles in
the air, from air, creating by exertion of the imagination.
Few media of creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand conceptual
structures. Yet the program construct, unlike the poet’s
words, is real in the sense that it moves and works, pro-
ducing visible outputs separate from the construct itself.
The magic of myth and legend has come true in our time.
One types the correct incantation on a keyboard, and a dis-
play screen comes to life, showing things that never were
nor could be.

Software presents a subtly different functionality problem than phys-
ical designs do. Software is plainly functional: when run on a com-
puter, it does something. But there are at least two distinct ways in
which software might be more than just functional. First, the soft-
ware’s code might contain nonexpressive elements: multiple differ-
ent programs can do the same thing, so a programmer typically has
at least some design choices not dictated by a given function. Sec-
ond, the thing the software does might be expressive: it might show
a movie or play a song. (Recall Stern’s treatment of a video game as
an audiovisual work.) Complicating matters even more, a program’s
output might itself be both aesthetic and functional, which is typically
the case for user interfaces. Pay attention to how each body of intel-
lectual property law teases out these different aspects of software.

A Trade Secret

Trade secret protection is obviously available and effective for soft-
ware used internally within a business. The more interesting ques-
tion is whether and how a business can make software available to

Frederick P. Brooks, The Mythical Man-
Month (1975)

Barr-Mullin Compu-Rip rip saw feeder

SmartSpice screenshot

CHAPTER 10. SOFTWARE 4

others while mainting at least some of the software’s design as a se-
cret. A later chapter will consider whether contractual restrictions
help, but for now, focus on the practical question of what software
necessarily discloses to its users.

Barr-Mullin, Inc. v. Browning
424 S.E.2d 226 (N.C. Ct. App. 1993)

According to defendants, the COMPU-RIP software is not a trade
secret since it is (1) not subject to reasonable efforts to maintain its
secrecy and (2) defendants reverse engineered this software. The
COMPU-RIP software is contained in the form of “programmable
read-only memory chips” (PROMS) imbedded in the COMPU-RIP
machinery. These PROMS contain only the “object code” version of
the computer program. This is the version of the computer software
which is “read” by the computer’s machinery. Computer program-
mers do not write computer software in object code; rather, the soft-
ware is written in “source code” and then translated into object code
so that the computer can execute the program. Since the COMPU-RIP
software was sold in PROM form, the source code was not available
to the general public.

The affidavits of Timothy Toombs and Gary Ruggles, who holds
a Ph.D. in Electrical Engineering, indicate that because the COMPU-
RIP software is distributed in object code form it is practically impos-
sible to make any meaningful changes to the software. This evidence
establishes the COMPU-RIP software was subject to reasonable ef-
forts to maintain its secrecy. As to the question of reverse engineer-
ing, the affidavits indicate that it is practically impossible to make any
modification to the COMPU-RIP software using only the object code
contained in the PROMS. We find the evidence presented establishes
the COMPU-RIP software was not “readily ascertainable” through
reverse engineering.

Silvaco Data Systems v. Intel Corp.
184 Cal. App. 4th 210 (2010)
Silvaco develops and markets computer applications for the elec-
tronic design automation (EDA) field, which covers the entire com-
plex process of designing electronic circuits and systems. Among the
various subcategories of EDA software are circuit simulators, which
permit the designer to create a virtual model of a proposed circuit in
order to test its properties before incurring the expense and delay of
manufacturing a working prototype.

Among Silvaco’s software products is SmartSpice, an analog cir-
cuit emulator. In December 2000, Silvaco filed a suit against Circuit
Semantics, Inc. (CSI), a competing developer of EDA software, alleg-
ing that CSI, aided by two former Silvaco employees, had misappro-

CHAPTER 10. SOFTWARE 5

priated trade secrets used in SmartSpice, and had incorporated them
in its own product, DynaSpice. Silvaco eventually secured a judg-
ment against CSL It then brought actions against several purchasers
of CSI software, including Intel. It alleged that by using CSI’s soft-
ware, these end users had misappropriated the Silvaco trade secrets
assertedly incorporated in that software.

The parties appear to agree, and we may accept for purposes of
this opinion, that “source code” describes the text in which computer
programs are originally written by their human authors using a high-
level programming language.g. One who possesses the source code
for a program may readily ascertain its underlying design, and may
directly incorporate it, or pieces of it, into another program. In order
to yield a functioning computer application, however, source code
must generally be translated or “compiled” into machine-readable
(executable) code. After a program is compiled, it may still be rep-
resented as text, but the text is not readily intelligible to human be-
ings, consisting of strings of binary (base 2) or hexadecimal (base
16) numbers.2 For this reason, the source code for many if not most
commercial software products is a secret, and may remain so despite
widespread distribution of the executable program.

A. Question Presented

The contention presents a question of law: whether a defendant can
be liable for misappropriation of a trade secret which is admittedly
embodied in source code, based upon the act of executing, on his

“This is an accurate enough description where, as here, the facts conform to what
one writer has called the ”Standard Scenario.” Ed Felten, Source Code and Object
Code. In this scenario, human programmers write a program in a high-level pro-
gramming language; this source code is then processed through software known as
a compiler to produce object code that may be executed on a machine. Departures
from the standard scenario, however, are increasingly common. Another writer
asserts that among programmers the terms “source” and “object” do not really
describe “well-defined classes of code” but are “actually relative terms.” David S.
Touretzky, Source vs. Object Code: A False Dichotomy He continues, “Given a device
for transforming programs from one form to another, source code is what goes
into the device, and object code (or ‘target’ code) is what comes out. The target
code of one device is frequently the source code of another.” The upshot seems to
be that the correct use of these terms reflects variables that may not have any partic-
ular legal significance. Here, the essential variable for legal purposes is the extent
to which the code reveals the underlying design, i.e., the methods and algorithms
used by the developer. See Felten (suggesting distinctions based on whether code is
in ”“he form in which programmers customarily read and edit it”” and the extent to
which it is “human-readable”). The distinguishing feature for our purposes is that
what the parties call “source” code is written by programmers and readily under-
stood by them, whereas object or machine code is compiled by and for machines
and does not readily yield its underlying design to human understanding.

>For example, the instruction MoV for an Intel 32-bit microprocessor may be rep-
resented as 10116000 01100001 in binary code or Bo 61 in hexadecimal.

https://freedom-to-tinker.com/2002/09/04/source-code-and-object-code/
https://freedom-to-tinker.com/2002/09/04/source-code-and-object-code/
https://www.cs.cmu.edu/~dst/DeCSS/object-code.txt

Do you understand what the court is
talking about here? Did the court? Sil-
vaco's lawyers?

CHAPTER 10. SOFTWARE 6

own computer, executable code allegedly tainted by the incorpora-
tion of design features wrongfully derived from the plaintiff’s source
code. It is undisputed that the object code executed by Intel could
not disclose the underlying source code or permit the exploitation of
its features and design. It could not, in short, impart knowledge of
the trade secret. The question is whether, in such circumstances, Intel
could be found to have misappropriated Silvaco’s trade secrets.

B. Trade Secret

Itis critical to any CUTSA cause of action —and any defense — that the
information claimed to have been misappropriated be clearly identi-
fied. Pursuant to this requirement, Silvaco filed a document, under
seal, designating the trade secrets claimed by it. The designationiden-
tified trade secrets in six categories. The first five categories referred
only to source code.

The sixth category of claimed trade secrets was described as “the
... trade secrets identified in Exhibit B ... and the source code imple-
menting such trade secrets.” Exhibit B consists of 22 pages of techni-
cal verbiage most of which may be readily intelligible only to those
within the EDA field. This much, however, seems reasonably clear:
the exhibit does not designate information as such but rather de-
scribes various features, functions, and characteristics of the design
and operation of Silvaco’s software products. Thus the first of the 24
listed subcategories is a “proprietary method” of carrying out a func-
tion apparently found in competing programs as well. This asserted
secret is also described as “a methodology for” implementing that
function, apparently in an unusual way, which ”contributes to per-
formance and accuracy improvements.” This “trade secret methodol-
ogy” is “implemented” by two named “modules,” also described as
“functions,” which ”“represent part” of the critical “algorithm.” Three
“unique features” of this method are listed: The “integration” of two
other operations; a “method” of ”changing and controlling” a vari-
able, which ”affects the performance of the simulation”; and a mode
of “implementation” that produces ”efficiency.”

Silvaco’s sixth category thus appears to attempt to characterize
various aspects of the underlying design as trade secrets. The design
may constitute the basis for a trade secret, such that information con-
cerning it could be actionably misappropriated; but it is the informa-
tion — not the design itself — that must form the basis for the cause of
action. And while the finished (compiled) product might have dis-
tinctive characteristics resulting from that design — such as improved
performance — they cannot constitute trade secrets because they are
not secret, but are evident to anyone running the finished program.
Indeed, to the extent they tend to disclose the underlying design, it
ceases to be a protectable secret for that same reason. The sixth cate-

CHAPTER 10. SOFTWARE 7

gory therefore fails to describe a trade secret other than source code.
Since none of the other categories even purport to do so, Intel is quite
correct to premise its argument on the proposition that the only trade
secrets at issue are found in Silvaco’s source code.

C. Misappropriation

Misappropriation of a trade secret may be achieved through three
types of conduct: “acquisition,” “disclosure,” or “use.”

There is no suggestion that Intel ever disclosed Silvaco’s source
code to anyone, and it is difficult to see how it might have done so
since there is no evidence that it ever had the source code to disclose.
Silvaco emphasizes that wrongful acquisition of a trade secret may
be actionable in itself. But there is no basis to suppose that Intel ever
“acquired” the source code constituting the trade secrets.

Silvaco has never explained how any conduct by Intel constituted
"use” of its source code. One clearly engages in the "use” of a se-
cret, in the ordinary sense, when one directly exploits it for his own
advantage, e.g., by incorporating it into his own manufacturing tech-
nique or product. But “use” in the ordinary sense is not present when
the conduct consists entirely of possessing, and taking advantage of,
something that was made using the secret.

One who bakes a pie from a recipe certainly engages in the “use”
of the latter; but one who eats the pie does not, by virtue of that act
alone, make "use” of the recipe in any ordinary sense, and this is true
even if the baker is accused of stealing the recipe from a competitor,
and the diner knows of that accusation. Yet this is substantially the
same situation as when one runs software that was compiled from al-
legedly stolen source code. The source code is the recipe from which
the pie (executable program) is baked (compiled). Nor is the anal-
ogy weakened by the fact that a diner is not ordinarily said to make
"use” of something he eats. His metabolism may be said to do so, or
the analogy may be adjusted to replace the pie with an instrument,
such as a stopwatch. A coach who employs the latter to time a race
certainly makes “use” of it, but only a sophist could bring himself to
say that coach “uses” trade secrets involved in the manufacture of the
watch.

Intel appears to have been in substantially the same position as
the customer in the pie shop who is accused of stealing the secret
recipe because he bought a pie with knowledge that a rival baker had
accused the seller of using the rival’s stolen recipe. The customer does
not, by buying or eating the pie, gain knowledge of the recipe used
to make it.

Strong considerations of public policy reinforce the commonsense
conclusion that using a product does not constitute a “use” of trade
secrets employed in its manufacture. If merely running finished soft-

For a discussion of the mathematics in-

volved, see Andrew Chin, Ghost in the
"New Machine", 16 N.C. J.L. & Tech. 623
(2015).

<z 24 \ —

XA

AR //

x / " Ly
/ VAN \ /

287 E\LS l—/
L—— ,.>\\\

AN

FI6 2 \\(25

Figure 2 from the application

The patent ultimately issued as U.S. Pat.

No. 3,519,997

CHAPTER 10. SOFTWARE 8

ware constituted a use of the source code from which it was compiled,
then every purchaser of software would be exposed to liability if it
were later alleged that the software was based in part upon purloined
source code. This risk could be expected to inhibit software sales and

discourage innovation to an extent far beyond the intentions and pur-
pose of CUTSA.

B Patent

1 Subject Matter
a Then

In re Bernhart
417 F.2d 1395 (CCPA 1969)

[Two Boeing employees developed a mathematical technique to dis-
play two-dimensional representations of three-dimensional objects.
They claimed, for example:]

13 A plotting method ... comprising;:

(a) a first step of programming the computer to compute the
position of planar Cartesian coordinate axes in the given
plane relative to the given set of object points ...

(c) the step of applying the computer output to the input of
a planar plotting apparatus adapted to provide on a plane
a succession of straightline segments that connect between
sequential points having positions corresponding to the co-
ordinates computed by the second step.

18 A system for providing a drawing of an object comprising in
combination: electronic digital computer means programmed
to respond to applied signals (xe,ye,ze) and a series of groups
of signals (xi,yi,zi) to provide a corresponding series of pairs
of output signals (vi,wi) with the relationship between signals
(xiyi,zi) and (xe,ye,ze) to the signals (vi,wi) being defined as
follows ...

Looking first at the apparatus claims, these claims recite, and can be
infringed only by, a digital computer in a certain physical condition,
i. e., electro-mechanically set or programmed to carry out the recited
routine. Accordingly, we think it clear that applicants have not de-
fined as their invention anything in which the human mind could be
used as a component. Nor are the “printed matter” cases, cited by
the board, supra, controlling as to these apparatus claims either on
the facts or in principle. On their facts, those cases dealt with claims
defining as the invention certain novel arrangements of printed lines

https://patents.google.com/patent/US3519997A/en

CHAPTER 10. SOFTWARE 9

or characters, useful and intelligible only to the human mind. Here
the invention as defined by the claims requires that the information be
processed not by the mind but by a machine, the computer, and that
the drawing be done not by a draftsman but by a plotting machine.

There is one further rationale used by both the board and the ex-
aminer, namely, that the provision of new signals to be stored by the
computer does not make it a new machine, i.e. it is structurally the
same, no matter how new, useful and unobvious the result. This ra-
tionale really goes more to novelty than to statutory subject matter
but it appears to be at the heart of the present controversy. To this
question we say that if a machine is programmed in a certain new
and unobvious way, it is physically different from the machine with-
out that program; its memory elements are differently arranged. The
fact that these physical changes are invisible to the eye should not
tempt us to conclude that the machine has not been changed. If a
new machine has not been invented, certainly a “new and useful im-
provement” of the unprogrammed machine has been, and Congress
has said in § 101 that such improvements are statutory subject mat-
ter for a patent. It may well be that the vast majority of newly pro-
grammed machines are obvious to those skilled in the art and hence
unpatentable under § 103. We are concluding here that such ma-
chines are statutory under § 101, and that claims defining them must
be judged for patentability in light of the prior art.

In re Alappat
33 F.3d 1526 (Fed. Cir. 1994)
[Alappat’s invention dealt with the problem of displaying continu-
ous analog signals on a discrete digital display. Illuminating only the
closest pixels to the signal results in jagged, uneven edges. In Alap-
pat’s method, all the pixels close to the signal are illuminated, with
brightness proportional to how close they are to the signal.] Employ-
ing this anti-aliasing technique eliminates any apparent discontinu-
ity, jaggedness, or oscillation in the waveform, thus giving the visual
appearance of a smooth continuous waveform. In short, and in lay
terms, the invention is an improvement in an oscilloscope compara-
ble to a TV having a clearer picture.Figure 4 from the application
Claim 15, the only independent claim in issue, reads:

A rasterizer for converting vector list data represent-

ing sample magnitudes of an input waveform into anti-

aliased pixel illumination intensity data to be displayed

on a display means comprising:

(a) means for determining the vertical distance between
the endpoints of each of the vectors in the data list;

(b) means for determining the elevation of a row of pix-

(Rich, J.)

images/alappat.png

The patent issued as U.S. Pat.
5,440,676

No.

https://patents.google.com/patent/US5440676A/en

CHAPTER 10. SOFTWARE 10

els that is spanned by the vector;

(c) means for normalizing the vertical distance and ele-
vation; and

(d) means for outputting illumination intensity data as
a predetermined function of the normalized vertical
distance and elevation.

The Board erred in its reasoning that claim 15 is unpatentable merely
because it “reads on a general purpose digital computer ‘means’
to perform the various steps under program control.” Alappat ad-
mits that claim 15 would read on a general purpose computer pro-
grammed to carry out the claimed invention, but argues that this
alone also does not justify holding claim 15 unpatentable as directed
to nonstatutory subject matter. We agree. We have held that such pro-
gramming creates a new machine, because a general purpose com-
puter in effect becomes a special purpose computer once it is pro-
grammed to perform particular functions pursuant to instructions
from program software.

Under the Board’s reasoning, a programmed general purpose
computer could never be viewed as patentable subject matter under
§ 101. This reasoning is without basis in the law. The Supreme Court
has never held that a programmed computer may never be entitled to
patent protection. Indeed, the Benson court specifically stated that its
decision therein did not preclude ”a patent for any program servicing
a computer.” Consequently, a computer operating pursuant to soft-
ware may represent patentable subject matter, provided, of course,
that the claimed subject matter meets all of the other requirements of
Title 35. In any case, a computer, like a rasterizer, is apparatus not
mathematics.

Archer, Chief Judge, dissenting:

I disagree with the majority’s conclusion that Alappat’s “raster-
izer,” which is all that is claimed in the claims at issue, constitutes an
invention or discovery within 35 U.S.C. § 101. Alappat has arranged
known circuit elements to accomplish nothing other than the solving
of a particular mathematical equation represented in the mind of the
reader of his patent application.

Consider for example the discovery or creation of music, a new
song. Music of course is not patentable subject matter; a composer
cannot obtain exclusive patent rights for the original creation of a mu-
sical composition. But now suppose the new melody is recorded on
a compact disc. In such case, the particular musical composition will
define an arrangement of minute pits in the surface of the compact
disc material, and therefore will define its specific structure. Alterna-
tively suppose the music is recorded on the rolls of a player piano or

CHAPTER 10. SOFTWARE 11

a music box.

Through the expedient of putting his music on known structure,
can a composer now claim as his invention the structure of a com-
pact disc or player piano roll containing the melody he discovered
and obtain a patent therefor? The answer must be no. The composer
admittedly has invented or discovered nothing but music. The dis-
covery of music does not become patentable subject matter simply
because there is an arbitrary claim to some structure.

And if a claim to a compact disc or piano roll containing a newly
discovered song were regarded as a “manufacture” and within § 101
simply because of the specific physical structure of the compact disc,
the ”practical effect” would be the granting of a patent for a discov-
ery in music. Where the music is new, the precise structure of the
disc or roll would be novel under § 102. Because the patent law can-
not examine music for “nonobviousness,” the Patent and Trademark
Office could not make a showing of obviousness under § 103. The re-
sult would well be the award of a patent for the discovery of music.

Alappat admits that each of the circuitry elements of the claimed
“rasterizer” is old. He says they are merely “form.” Thus, they are
only a convenient and basic way of electrically representing the math-
ematical operations to be performed, that is, converting vector data
into matrix or raster data. In Alappat’s view, it is the new mathematic
operation that is the “substance” of the claimed invention or discov-
ery. Claim 15 as a whole thus claims old circuitry elements in an ar-
rangement defined by a mathematical operation, which only performs
the very mathematical operation that defines it. Rather than claiming
the mathematics itself, which of course Alappat cannot do, Alappat
claims the mathematically defined structure. But as a whole, there
is no “application” apart from the mathematical operation that is as-
serted to be the invention or discovery. What is going on here is a
charade.

This is not to say that digital circuitry cannot be an element in an
otherwise statutory machine. Under Diehr, it can.

Thus unlike the rubber curing process in Diehr, the claimed raster-
izer here is not an application of mathematics in an otherwise statu-
tory process or product. The rasterizer is simply the mathematical
conversion of data. In Diehr, the input data were derived by a claimed
component of the overall rubber curing process — the press and ther-
mocouple — which fed data to the claimed computer. Here, however,
as the specification and claims indicate, the waveform data converted

6L ikewise, but not present in this case, improved digital circuitry itself, such as
faster digital processors, would be statutory subject matter. Unlike the “rasterizer”
in this case, they are not simply a claimed arrangement of circuit elements defined
by a mathematical operation which does nothing more than solve the operation
that defines it.

CHAPTER 10. SOFTWARE 12

by the claimed rasterizer are not required to come from a particular
machine connected up to the rasterizer, and, as Alappat admits, it
does not matter how the data are selected. The sets of waveform num-
bers converted by the claimed rasterizer could come simply from the
mind and hand of a person. The end product of the claimed rasterizer
is not precisely cured rubber as it was in Diehr but rather different
data as a mathematical function of the original data. Sure the data
have some use. Most data have uses, and that is why people spend
time calculating data. But just having some use for data does not
make the creation of particular data patentable. Alappat’s claimed
rasterizer is newly discovered mathematics and not the invention or
discovery of a process or product applying it.

Finally, a ”general purpose computer” issue has been raised as an
aside in this case. Getting back to the music analogy, Alappat is like
a composer who claims his song on a compact disc, and then argues
that the compact disc is equivalent to a player piano or a music box
with the song on a roll or even sheet music because they all represent
the same song. The composer is thus clearly asking for (and getting
from the majority) a patent for the discovery of a song and a patent
covering every physical manifestation of the song.

Thus, a known circuit containing a light bulb, battery, and switch
is not a new machine when the switch is opened and closed to re-
cite a new story in Morse code, because the “invention or discovery”
is merely a new story, which is nonstatutory subject matter. An old
stereo playing a new song on a compact disc is not a new machine be-
cause the invention or discovery is merely a new song, which is non-
statutory subject matter. The ”perforated rolls [of a player piano] are
parts of a machine which, when duly applied and properly operated
in connection with the mechanism to which they are adapted, pro-
duce musical tones in harmonious combination.” White-Smith. Yet a
player piano playing Chopin’s scales does not become a “new ma-
chine” when it spins a roll to play Brahms’ lullaby.E

State Street Bank & Trust Co. v. Signature Financial Group
149 F.3d 1368 (Fed. Cir. 1998)
The patented invention [U.S. Pat No. 5,193,056] relates generally to a
system that allows an administrator to monitor and record the finan-
cial information flow and make all calculations necessary for several
mutual funds to pool their investment funds into a single portfolio.
Unpatentable mathematical algorithms are identifiable by show-

20Of course, a player piano itself could be a new machine, for example in relation
toamusicbox, and, likewise, a player piano capable because of design of improved
piano-playing might also be a new machine. In such cases, the invention or discov-
ery is the quality of the structure of the piano - its mode of operation — and not the
particular piece of music being played.

https://patents.google.com/patent/US5193056A/en

CHAPTER 10. SOFTWARE 13

ing they are merely abstract ideas constituting disembodied concepts
or truths that are not “useful.” From a practical standpoint, this
means that to be patentable an algorithm must be applied in a "use-
ful” way. In M we held that data, transformed by a machine
through a series of mathematical calculations to produce a smooth
waveform display on a rasterizer monitor, constituted a practical ap-
plication of an abstract idea (a mathematical algorithm, formula, or
calculation), because it produced ”a useful, concrete and tangible re-
sult” — the smooth waveform.

Similarly, in Arrhythmia Research Technology Inc. v. Corazonix Corp.,
we held that the transformation of electrocardiograph signals from a
patient’s heartbeat by a machine through a series of mathematical
calculations constituted a practical application of an abstract idea (a
mathematical algorithm, formula, or calculation), because it corre-
sponded to a useful, concrete or tangible thing — the condition of a
patient’s heart.

Today, we hold that the transformation of data, representing dis-
crete dollar amounts, by a machine through a series of mathematical
calculations into a final share price, constitutes a practical applica-
tion of a mathematical algorithm, formula, or calculation, because it
produces ”a useful, concrete and tangible result” — a final share price
momentarily fixed for recording and reporting purposes and even ac-
cepted and relied upon by regulatory authorities and in subsequent
trades.

b Now

Alice Corp. v. CLS Bank Int'l
134 S. Ct. 2347 (2014)

The patents at issue in this case disclose a computer-implemented
scheme for mitigating ”settlement risk” (i.e., the risk that only one
party to a financial transaction will pay what it owes) by using a
third-party intermediary. The question presented is whether these
claims are patent eligible under 35 U.S.C. § 101, or are instead drawn
to a patent-ineligible abstract idea. We hold that the claims at issue
are drawn to the abstract idea of intermediated settlement, and that
merely requiring generic computer implementation fails to transform
that abstract idea into a patent-eligible invention.

I
A

Petitioner Alice Corporation is the assignee of several patents that
disclose schemes to manage certain forms of financial risk. Accord-
ing to the specification largely shared by the patents, the invention

r q
| PORTROUO |
| ACCOUNTING |~ 56
L _Sem |
,
//m
ADMINISTRATOR s
FOT/ T
M,
| | m

Figure 4 from the patent

Arrythmia: 958 F.2d 1053 (Fed. Cir.

1992)

Bilski: 561 U. S. 593 (2010)

CHAPTER 10. SOFTWARE 14

“enabl[es] the management of risk relating to specified, yet unknown,
future events.” The specification further explains that the “invention
relates to methods and apparatus, including electrical computers and
data processing systems applied to financial matters and risk manage-
ment.”

The claims at issue relate to a computerized scheme for mitigat-
ing ”settlement risk” — i.e., the risk that only one party to an agreed-
upon financial exchange will satisfy its obligation. In particular, the
claims are designed to facilitate the exchange of financial obligations
between two parties by using a computer system as a third-party
intermediary. The intermediary creates “shadow” credit and debit
records (i.e., account ledgers) that mirror the balances in the parties’
real-world accounts at “exchange institutions” (e.g., banks). The in-
termediary updates the shadow records in real time as transactions
are entered, allowing only those transactions for which the parties’
updated shadow records indicate sufficient resources to satisfy their
mutual obligations. At the end of the day, the intermediary instructs
the relevant financial institutions to carry out the “permitted” trans-
actions in accordance with the updated shadow records, thus miti-
gating the risk that only one party will perform the agreed-upon ex-
change.

In sum, the patents in suit claim (1) the foregoing method for
exchanging obligations (the method claims), (2) a computer system
configured to carry out the method for exchanging obligations (the
system claims), and (3) a computer-readable medium containing pro-
gram code for performing the method of exchanging obligations (the
media claims). All of the claims are implemented using a computer;
the system and media claims expressly recite a computer, and the
parties have stipulated that the method claims require a computer as
well.

II

Section 101 of the Patent Act defines the subject matter eligible for
patent protection. We have long held that this provision contains an
important implicit exception: Laws of nature, natural phenomena,
and abstract ideas are not patentable.

We have described the concern that drives this exclusionary prin-
ciple as one of pre-emption. See, e.g., Bilski v. Kappos, (upholding the
patent “would pre-empt use of this approach in all fields, and would
effectively grant a monopoly over an abstract idea”). Laws of nature,
natural phenomena, and abstract ideas are the basic tools of scien-
tific and technological work. Monopolization of those tools through
the grant of a patent might tend to impede innovation more than it
would tend to promote it,” thereby thwarting the primary object of
the patent laws. We have repeatedly emphasized this concern that

CHAPTER 10. SOFTWARE 15

patent law not inhibit further discovery by improperly tying up the
future use of these building blocks of human ingenuity.

At the same time, we tread carefully in construing this exclusion-
ary principle lest it swallow all of patent law. At some level, all inven-
tions embody, use, reflect, rest upon, or apply laws of nature, natural
phenomena, or abstract ideas. Thus, an invention is not rendered in-
eligible for patent simply because it involves an abstract concept. See
Diamond v. Diehr. Applications of such concepts to a new and useful
end remain eligible for patent protection.

Accordingly, in applying the S 101 exception, we must distinguish
between patents that claim the building blocks of human ingenuity
and those that integrate the building blocks into something more,
thereby transforming them into a patent-eligible invention, The for-
mer would risk disproportionately tying up the use of the underlying
ideas, and are therefore ineligible for patent protection. The latter
pose no comparable risk of pre-emption, and therefore remain eligi-
ble for the monopoly granted under our patent laws.

III

In ??, we set forth a framework for distinguishing patents that claim
laws of nature, natural phenomena, and abstract ideas from those
that claim patent-eligible applications of those concepts. First, we
determine whether the claims at issue are directed to one of those
patent-ineligible concepts. If so, we then ask, what else is there in the
claims before us? To answer that question, we consider the elements
of each claim both individually and as an ordered combination to de-
termine whether the additional elements transform the nature of the
claim into a patent-eligible application. We have described step two
of this analysis as a search for an “inventive concept” —i.e., an ele-
ment or combination of elements that is sufficient to ensure that the
patent in practice amounts to significantly more than a patent upon
the ineligible concept itself.

A

We must first determine whether the claims at issue are directed to
a patent-ineligible concept. We conclude that they are: These claims
are drawn to the abstract idea of intermediated settlement.

The ”abstractideas” category embodies the longstanding rule that
an idea of itself is not patentable. In Gottschalk v. Benson, for example,
this Court rejected as ineligible patent claims involving an algorithm
for converting binary-coded decimal numerals into pure binary form,
holding that the claimed patent was ”in practical effect a patent on
the algorithm itself.” And in Parker v. Flook, we held that a mathemat-
ical formula for computing ”“alarm limits” in a catalytic conversion
process was also a patent-ineligible abstract idea.

Diehr: 450 U.S. 175 (1981)

Benson: 409 U. S. 63 (1972)

Flook: 437 U.S. 584 (1978)

"Perhaps the most striking feature of

the opinion is its focus on the require-

ment for an ‘inventive concept! This

choice of terminology is perhaps un-

fortunate, as it closely resembles the
terminology of ‘inventive step’ that is

used in much of the world to desig-

nate the requirement for a patentable
invention to be a significant advance

over the prior art. Typically the ‘inven-

tive step’ requirement, which is found
in many patent systems, including as

Art. 52 of the European Patent Con-

vention, is considered equivalent to the
‘non-obviousness’ requirement found
in Sec. 103 of the American patent
statute, rather than equivalent to any

U.S. subject matter provision." Dan L.
Burk, The Inventive Concept in Alice Corp.

v. CLS Bank Int'l., 45 1IC 865 (2014).

CHAPTER 10. SOFTWARE 16

We most recently addressed the category of abstractideas in .
The claims at issue in described a method for hedging against
the financial risk of price fluctuations. Claim 1 recited a series of
steps for hedging risk, including: (1) initiating a series of financial
transactions between providers and consumers of a commodity; (2)
identifying market participants that have a counterrisk for the same
commodity; and (3) initiating a series of transactions between those
market participants and the commodity provider to balance the risk
position of the first series of consumer transactions. Claim 4 put the
concept articulated in claim 1 into a simple mathematical formula.
The remaining claims were drawn to examples of hedging in com-
modities and energy markets.

All members of the Court agreed that the patent at issue in
claimed an abstract idea. Specifically, the claims described the
basic concept of hedging, or protecting against risk. The Court ex-
plained that “hedging is a fundamental economic practice long preva-
lent in our system of commerce and taught in any introductory fi-
nance class.” The concept of hedging as recited by the claims in suit
was therefore a patent-ineligible abstract idea, just like the algorithms
at issue in and .

On their face, the claims before us are drawn to the concept of
intermediated settlement, i.e., the use of a third party to mitigate set-
tlement risk. Like the risk hedging in the concept of interme-
diated settlement is a fundamental economic practice long prevalent
in our system of commerce. The use of a third-party intermediary
(or “clearing house”) is also a building block of the modern economy.
Thus, intermediated settlement, like hedging, is an “abstractidea” be-
yond the scope of § 101.

B

Because the claims at issue are directed to the abstract idea of inter-
mediated settlement, we turn to the second step in ??’s framework.
We conclude that the method claims, which merely require generic
computer implementation, fail to transform that abstract idea into a
patent-eligible invention.

1

At ?? step two, we must examine the elements of the claim to deter-
mine whether it contains an ”inventive concept” sufficient to ”trans-
form” the claimed abstract idea into a patent-eligible application. A
claim that recites an abstract idea must include “additional features”
to ensure “that the claim is more than a drafting effort designed to
monopolize the abstract idea.”

The introduction of a computer into the claims does not alter the
analysis at ?? step two. In for example, we considered a patent

CHAPTER 10. SOFTWARE 17

that claimed an algorithm implemented on a general-purpose digi-
tal computer. Because the algorithm was an abstract idea, the claim
had to supply a new and useful application of the idea in order to
be patent eligible. But the computer implementation did not supply
the necessary inventive concept; the process could be carried out in
existing computers long in use. We accordingly held that simply im-
plementing a mathematical principle on a physical machine, namely
a computer, is not a patentable application of that principle.

is to the same effect. There, we examined a computerized
method for using a mathematical formula to adjust alarm limits for
certain operating conditions (e.g., temperature and pressure) that
could signal inefficiency or danger in a catalytic conversion process.
Once again, the formula itself was an abstract idea and the computer
implementation was purely conventional. In holding that the process
was patent ineligible, we rejected the argument that implementing a
principle in some specific fashion will automatically fall within the
patentable subject matter of § 101. Thus, stands for the propo-
sition that the prohibition against patenting abstract ideas cannot be
circumvented by attempting to limit the use of the idea to a particular
technological environment.

In [Dichi, by contrast, we held that a computer-implemented pro-
cess for curing rubber was patent eligible, but not because it involved
a computer. The claim employed a well-known mathematical equa-
tion, but it used that equation in a process designed to solve a techno-
logical problem in conventional industry practice. The invention in
used a thermocouple to record constant temperature measure-
ments inside the rubber mold — something the industry had not been
able to obtain. The temperature measurements were then fed into
a computer, which repeatedly recalculated the remaining cure time
by using the mathematical equation. These additional steps trans-
formed the process into an inventive application of the formula. In
other words, the claims in were patent eligible because they
improved an existing technological process, not because they were
implemented on a computer.

These cases demonstrate that the mere recitation of a generic com-
puter cannot transform a patent-ineligible abstract idea into a patent-
eligible invention. Stating an abstract idea “while adding the words
‘apply it” is not enough for patent eligibility. ??. Nor is limiting the
use of an abstract idea to a particular technological environment. Stat-
ing an abstract idea while adding the words ”apply it with a com-
puter” simply combines those two steps, with the same deficient re-
sult. Thus, if a patent’s recitation of a computer amounts to a mere
instruction to implement an abstract idea on a computer, that addi-
tion cannot impart patent eligibility.

The fact that a computer necessarily exists in the physical, rather

I17

CHAPTER 10. SOFTWARE 18

than purely conceptual, realm, is beside the point. There isno dispute
that a computer is a tangible system (in § 101 terms, a “machine”), or
that many computer-implemented claims are formally addressed to
patent-eligible subject matter. But if that were the end of the § 101
inquiry, an applicant could claim any principle of the physical or so-
cial sciences by reciting a computer system configured to implement
the relevant concept. Such a result would make the determination of
patent eligibility depend simply on the draftsman’s art, thereby evis-
cerating the rule that laws of nature, natural phenomena, and abstract
ideas are not patentable.

2

The representative method claim in this case recites the following
steps: (1) ”creating” shadow records for each counterparty to a trans-
action; (2) “obtaining” start-of-day balances based on the parties’ real-
world accounts at exchange institutions; (3) “adjusting” the shadow
records as transactions are entered, allowing only those transactions
for which the parties have sufficient resources; and (4) issuing irrevo-
cable end-of-day instructions to the exchange institutions to carry out
the permitted transactions. Petitioner principally contends that the
claims are patent eligible because these steps “require a substantial
and meaningful role for the computer.” As stipulated, the claimed
method requires the use of a computer to create electronic records,
track multiple transactions, and issue simultaneous instructions; in
other words, the computer is itself the intermediary.

In light of the foregoing, the relevant question is whether the
claims here do more than simply instruct the practitioner to imple-
ment the abstract idea of intermediated settlement on a generic com-
puter. They do not.

Taking the claim elements separately, the function performed by
the computer at each step of the process is purely conventional. Us-
ing a computer to create and maintain “shadow” accounts amounts
to electronic recordkeeping — one of the most basic functions of a com-
puter. The same is true with respect to the use of a computer to ob-
tain data, adjust account balances, and issue automated instructions;
all of these computer functions are well-understood, routine, conven-
tional activities previously known to the industry. In short, each step
does no more than require a generic computer to perform generic
computer functions.

Considered as an ordered combination, the computer compo-
nents of petitioner’s method add nothing that is not already present
when the steps are considered separately. Viewed as a whole, pe-
titioner’s method claims simply recite the concept of intermediated
settlement as performed by a generic computer. The method claims
do not, for example, purport to improve the functioning of the com-

CHAPTER 10. SOFTWARE 19

puter itself. Nor do they effect an improvement in any other technol-
ogy or technical field. Instead, the claims at issue amount to “nothing
significantly more” than an instruction to apply the abstract idea of
intermediated settlement using some unspecified, generic computer.
Under our precedents, that is not enough to transform an abstract
idea into a patent-eligible invention.

C

Petitioner’s claims to a computer system and a computer-readable
medium fail for substantially the same reasons. Petitioner conceded
below that its media claims rise or fall with its method claims. As
to its system claims, petitioner emphasizes that those claims recite
”specific hardware” configured to perform ”specific computerized
functions.” But what petitioner characterizes as specific hardware —
a “data processing system” with a “communications controller” and
”data storage unit,” for example — is purely functional and generic.
Nearly every computer will include a ”“communications controller”
and ”data storage unit” capable of performing the basic calculation,
storage, and transmission functions required by the method claims.
As aresult, none of the hardware recited by the system claims offers a
meaningful limitation beyond generally linking the use of the method
to a particular technological environment, thatis, implementation via
computers.

Put another way, the system claims are no different from the
method claims in substance. The method claims recite the abstract
idea implemented on a generic computer; the system claims recite a
handful of generic computer components configured to implement
the same idea. This Court has long warned against interpreting § 101
in ways that make patent eligibility depend simply on the drafts-
man’s art. Holding that the system claims are patent eligible would
have exactly that result.

Because petitioner’s system and media claims add nothing of sub-
stance to the underlying abstract idea, we hold that they too are
patent ineligible under § 101.

McRO, Inc. v. Bandai Namco Games America Inc.
--- F.3d --- (Fed Cir. Sept. 13, 2016)
[3D animators depict facial expressions by defining the positions of
the vertices for a character’s face as it pronounces different phonemes,
like “ahh.” The set of vertex positions for a phoneme is a “morph
target”; the set of positions for a face at rest is the “neutral model.”
The difference between a morph target and the neutral model is
the target’'s ”delta set.” Traditionally, animators would identify the
"keyframes” for morph targets by working from a “timed transcrpt”
that listed when the character pronounced each phoneme. A com-

Is a computer itself patentable?

CHAPTER 10. SOFTWARE 20

puter would then automatically generate intermediate facial expres-
sions between two keyframes by blending the morph targets for the
two.]

For example, the face halfway between the neutral model and the
“oh” face can be expressed simply by setting the “oh” morph weight
to 0.5, i.e,, 50%, as shown [in the margin] to the left. The model
halfway to the next syllable, in turn, could be expressed by setting
both the “oh” morph weight and that for the next syllable each to
0.5, creating a blend of those two delta sets. Because the pronounced
phoneme and drawn keyframe corresponded in time, this prior art
process synchronized the lips and facial expression of the 3-D char-
acter.

The patents [Nos. 6,307,576 and 6,611,278] criticize the preexisting
keyframe approach as “very tedious and time consuming, as well as
inaccurate due to the large number of keyframes necessary to depict
speech.” Essentially, the patents aim to automate a 3-D animator’s
tasks, specifically, determining when to set keyframes and setting
those keyframes. This automation is accomplished through rules that
are applied to the timed transcript to determine the morph weights.
The patents describe many exemplary rule sets that go beyond simply
matching single phonemes from the timed transcript with the appro-
priate morph target. Instead, these rule sets aim to produce more re-
alistic speech by “taking into consideration the differences in mouth
positions for similar phonemes based on context.”

One exemplary set of rules provided and applied in the specifi-
cation of the '576 patent is for a character transitioning from silence
through saying “hello.” This exemplary set of rules provides for in-
serting a transition starting shortly before the first syllable after a si-
lence. The transition marks when the character begins to transition

Example morph target for the “ahh”
phoneme

Two facial expression models

dme [sec) . phoneme wend from silence, shown by the closed-mouthed neutral model, to the
1695 h_ hello morph target for the first syllable, with its open-mouthed shape. That
1.995 | is, the rule automates a character’s facial expressions so the character
S will wait until shortly before it starts speaking to begin opening its
28, there mouth. In terms of the prior art method, the effect of this rule is to
2.335 r automatically create a keyframe at a point that no phoneme is being
2.435 sl . oy I’
2.475 h how pronounced. If instead no transition were placed at that position, the
ST resulting animation would have an unrealistic quality. The character
2.635 A are would open its mouth gradually from the beginning of the sequence
2.695 you through its first utterance as a result of the computer interpolating
0 e a continuous transition between those two points. In the prior art

r
Y
¢
X system, an animator would have to subjectively identify the problem-
e atic sequence and manually fix it by adding an appropriate keyframe.

: The invention, however, uses rules to automatically set a keyframe

at the correct point to depict more realistic speech, achieving results

Timed transcript of phonemes similar to those previously achieved manually by animators.

3.045

https://patents.google.com/patent/US6307576B1/en
https://patents.google.com/patent/US6611278B2/en

CHAPTER 10. SOFTWARE 21

Claim 1 of the '576 patent is representative and dispositive of the
asserted claims3 for the purposes of appeal:

A method for automatically animating lip synchroniza-
tion and facial expression of three-dimensional characters
comprising:
* obtaining a first set of rules that define output morph
weight set stream as a function of phoneme sequence
and time of said phoneme sequence;

* obtaining a timed data file of phonemes having a plu-
rality of sub-sequences;

e generating an intermediate stream of output morph
weight sets and a plurality of transition parameters
between two adjacent morph weight sets by evaluat-
ing said plurality of sub-sequences against said first
set of rules;

* generating a final stream of output morph weight
sets at a desired frame rate from said intermediate
stream of output morph weight sets and said plural-
ity of transition parameters; and

e applying said final stream of output morph weight
sets to a sequence of animated characters to produce
lip synchronization and facial expression control of
said animated characters.

The defendants are generally video game developers and publishers.

The district court determined that claim 1 of the '567 patent is
“drawn to the abstract idea of automated rules-based use of morph
targets and delta sets for lip-synchronized three-dimensional anima-
tion.” We disagree.

Courts must be careful to avoid oversimplifying the claims by
looking at them generally and failing to account for the specific
requirements of the claims. Here, the claims are limited to rules
with specific characteristics. As the district court recognized dur-
ing claim construction, “the claims themselves set out meaningful re-
quirements for the first set of rules: they define a morph weight set
stream as a function of phoneme sequence and times associated with
said phoneme sequence.” They further require “applying said first
set of rules to each sub-sequence of timed phonemes.” The specific,
claimed features of these rules allow for the improvement realized by
the invention.

As the specification confirms, the claimed improvement here is
allowing computers to produce “accurate and realistic lip synchro-
nization and facial expressions in animated characters” that previ-
ously could only be produced by human animators. As the district

CHAPTER 10. SOFTWARE 22

court correctly recognized, this computer automation is realized by
improving the prior art through “the use of rules, rather than artists,
to set the morph weights and transitions between phonemes.” The
rules are limiting in that they define morph weight sets as a func-
tion of the timing of phoneme sub-sequences. Defendants do not dis-
pute that processes that automate tasks that humans are capable of
performing are patent eligible if properly claimed; instead, they ar-
gue that the claims here are abstract because they do not claim spe-
cific rules. This argument echoes the district court’s finding that the
claims improperly purport to cover all rules. The claimed rules here,
however, are limited to rules with certain common characteristics, i.e.,
a genus.

Claims to the genus of an invention, rather than a particular
species, have long been acknowledged as patentable. Patent law
has evolved to place additional requirements on patentees seeking to
claim a genus; however, these limits have not been in relation to the
abstract idea exception to § 101. Rather they have principally been
in terms of whether the patentee has satisfied the tradeoff of broad
disclosure for broad claim scope implicit in 35 U.S.C. § 112. It is self-
evident that genus claims create a greater risk of preemption, thus
implicating the primary concern driving § 101 jurisprudence, but this
does not mean they are unpatentable.

Claim 1 is focused on a specific asserted improvement in com-
puter animation, i.e., the automatic use of rules of a particular type.
We disagree with Defendants’ arguments that the claims simply use
a computer as a tool to automate conventional activity. While the
rules are embodied in computer software that is processed by general-
purpose computers, Defendants provided no evidence that the pro-
cess previously used by animators is the same as the process required
by the claims. Defendants concede an animator’s process was driven
by subjective determinations rather than specific, limited mathemat-
ical rules. McRO states that animators would initially set keyframes
at the point a phoneme was pronounced to represent the correspond-
ing morph target as a starting point for further fine tuning. This activ-
ity, even if automated by rules, would not be within the scope of the
claims because it does not evaluate sub-sequences, generate transi-
tion parameters or apply transition parameters to create a final morph
weight set. It is the incorporation of the claimed rules, not the use of
the computer, that “improved [the] existing technological process”
by allowing the automation of further tasks. CLS Bank This is unlike
Flook, Bilski, and Alice, where the claimed computer-automated pro-
cess and the prior method were carried out in the same way.

Further, the automation goes beyond merely organizing existing
information into a new form or carrying out a fundamental economic
practice. The claimed process uses a combined order of specific rules

CHAPTER 10. SOFTWARE 23

that renders information into a specific format that is then used and
applied to create desired results: a sequence of synchronized, ani-
mated characters. While the result may not be tangible, there is noth-
ing that requires a method be tied to a machine or transform an article
to be patentable. The concern underlying the exceptions to § 101 is
not tangibility, but preemption.

The limitations in claim 1 prevent preemption of all processes for
achieving automated lip-synchronization of 3-D characters. McRO
has demonstrated that motion capture animation provides an alter-
native process for automatically animating lip synchronization and
facial expressions. Even so, the absence of complete preemption
does not demonstrate patent eligibility. The narrower concern here
is whether the claimed genus of rules preempts all techniques for au-
tomating 3-D animation that rely on rules. Claim 1 requires that
the rules be rendered in a specific way: as a relationship between
sub-sequences of phonemes, timing, and the weight to which each
phoneme is expressed visually at a particular timing (as represented
by the morph weight set). The specific structure of the claimed
rules would prevent broad preemption of all rules-based means of
automating lip synchronization, unless the limits of the rules them-
selves are broad enough to cover all possible approaches. There has
been no showing that any rules-based lip-synchronization process
must use rules with the specifically claimed characteristics.

Defendants’ attorney’s argument that any rules-based lip-
synchronization process must use the claimed type of rules has ap-
peal, but no record evidence supports this conclusion. Defendants
again rely only on the patents’ description of one type of rules, but the
description of one set of rules does not mean that there exists only one
set of rules, and does not support the view that other possible types
of rules with different characteristics do not exist. The only infor-
mation cited to this court about the relationship between speech and
face shape points to the conclusion that there are many other possi-
ble approaches to automating lip synchronization using rules. For ex-
ample, Amicus Public Knowledge cites Kiyoshi Honda, Physiological
Processes of Speech Processing, as support for the proposition that the
claimed rules reflect natural laws. Honda shows, however, that the
interaction between vocalization and facial expression is very com-
plex, and there are relationships present other than those required
by the claimed rules. This complex interaction permits development
of alternative rules-based methods of animating lip synchronization
and facial expressions of three-dimensional characters, such as sim-
ulating the muscle action underlying characters’ facial expressions.
Under these circumstances, therefore, we need not assume that fu-
ture alternative discoveries are foreclosed.

Because we find that claim 1 is not directed to ineligible subject

In Springer Handbook of Speech Produc-
tion (Jacob Benesty et al. eds., 2008)

CHAPTER 10. SOFTWARE 24

matter, we do not reach Alice step two.

Synopsys, Inc. v. Mentor Graphics Corp.
--- F.3d --- (Fed. Cir. Oct. 17,2016)
Synopsys, Inc. appeals the District Court for the Northern District of
California’s grant of summary judgment invalidating certain claims
of U.S. Patent Nos. 5,530,841, 5,680,318, and 5,748,488 under 35 U.S.C.
§101.

BACKGROUND

In the early days of logic circuits, a designer was required to specify
his design in great detail. He would do so in the form of a schematic
diagram that identified individual hardware components and the in-
terconnections between them or via a set of Boolean logic equations
that specified the precise functionality of the design. A fabrication fa-
cility would then build the corresponding physical circuit based on
the architecture presented in the detailed design.

Over time, logic circuits became more and more complex. As com-
plexity increased, many designers began to focus on the higher-level
functionality of their designs. [New computer languages known
as “hardware description languages”] allowed designers to describe
only the desired operation of the logic circuit rather than having to
specify the actual individual components and interconnections of the
logic circuit.

The introduction of HDLs necessitated the development of com-
puterized design tools that could translate the functional description
of the logic circuit into a detailed design for fabrication. Early com-
puterized design tools, however, could only recognize and translate
simple circuit elements.

The Gregory Patents describe constructs known as ”control flow
graphs,” and “assignment conditions,” that provide a scheme to
translate HDL-based functional descriptions of logic circuits into
hardware component descriptions of those same circuits without re-
quiring the designer to instantiate any individual hardware compo-
nents.

Representative claim 1 and the associated portion of the specifica-
tion of U.S. Pat. No. 5,530,841 detail the method of using assignment
conditions to translate from a functional description of a level sensi-
tive latch into a hardware component description of that same latch.
Claim 1 reads:

A method for converting a hardware independent user descrip-
tion of a logic circuit, that includes flow control statements in-
cluding an IF statement and a GOTO statement, and directive
statements that define levels of logic signals, into logic circuit
hardware components comprising:

https://patents.google.com/patent/US5530841A/en
https://patents.google.com/patent/US5680318A/en
https://patents.google.com/patent/US5748488A/en

CHAPTER 10. SOFTWARE 25

converting the flow control statements and directive state-
ments in the user description for a logic signal Q into an as-
signment condition AL(Q) for an asynchronous load func-
tion AL() and an assignment condition AD(Q) for an asyn-
chronous data function AD(); and

generating a level sensitive latch when both said assign-
ment condition AL(Q) and said assignment condition
AD(Q) are nonconstant;

wherein said assignment condition AD(Q) is a signal on a
data input line of said flow through latch;

said assignment condition AL(Q) is a signal on a latch gate
line of said flow through latch; and
an output signal of said flow through latch is said logic
signal Q.
A level sensitive latch is a basic form of memory. It is a hardware
component that stores a binary input (i.e., the value ”1” or ”0”), but
only when a specified condition is true. A level sensitive latch can be
described functionally using HDL code as follows:

If (COND)
Q: =D

else

endif

Here, ”"D” represents the input to the latch and "Q” the output.
The relationship between input D and output Q is dictated by the
”flow control statement” defined by the line of code "If(COND).” In
this example, when condition “COND” is true (i.e., has the value ”"1”),
the code flows to the immediately following line of code —i.e., "Q: =
D” —and output Q is assigned the value of input D. In contrast, when
condition COND is false (i.e., has the value ”0”), the code skips the di-
rective statement ”Q: =D" and flows directly to the line of code ”else.”
In this example, no instructions follow “else.” The value of output Q
therefore remains unchanged. In sum, when condition COND is true,
output Q is assigned the value of input D; when condition COND is
false, output Q retains its prior value regardless of whether the value
of input D remains the same or changes.

The claimed method takes the functional description of the latch
as an input. It then converts the functional description into an equiv-
alent description in the form of (1) an asynchronous load function;
and (2) an asynchronous data function. Here, the asynchronous load
tunction for output Q is COND because output Q is assigned a new
value (i.e., it is "loaded”) whenever condition COND is true. The
asynchronous data function for Q is “COND*D” because output Q

TABLE 8

TABLE 9

Figure 8A

CyberSource: 654 F.3d 1366 (Fed. Cir.
2011)

CHAPTER 10. SOFTWARE 26

is assigned the value ”1” if, and only if, both condition COND and
input D are true.
The assignment conditions associated with the functional descrip-

tion of the latch are summarized in the table below:
Assignment Conditions

Variable AL() AD() SL() SD() DC() Z()

Q COND COND*D 0 0 0 0
Claim 1 specifies that where, as here, the asynchronous load
function and the asynchronous data function are non-constant, the
claimed method generates a level sensitive latch. A hardware
component description of the level sensitive latch is shown below:

350

~340 A~

T PuE
—Q

A—342

COND . G

\
342-G

Importantly, the Gregory Patents make clear that HDL code ex-
isted in the prior art. The HDL code for the level sensitive latch shown
in Table 8 was already well known by the time the claimed inven-
tions of the Gregory Patents were conceived. The same is true of the
circuit diagram for a level sensitive latch shown in Figure 8A; circuit
diagrams like this existed long before the Gregory Patents. What Gre-
gory instead claims to have invented is a process for interpreting the
HDL code in Table 8 that uses the assignment conditions of Table 9
to identify the circuit diagram of Figure 8A as the hardware that per-
forms the function recited in the HDL code. At bottom, the informa-
tion provided in Table 8 (code), Table 9 (assignment conditions), and
Figure 8A (circuit diagram) are all equivalent representations of the
same thing: a level sensitive latch.

I. ALice STEP 1: ARE THE ASSERTED CLAIMS DIRECTED TO AN ABSTRACT
IDEA?
The district court based its Alice Step 1 analysis on a basic premise:
“the claims are directed to a mental process.” We held in CyberSource
Corp. v. Retail Decisions, Inc. that mental processes are “a subcategory
of unpatentable abstract ideas.” As we explained:

CHAPTER 10. SOFTWARE 27

Methods which can be performed entirely in the hu-
man mind are unpatentable not because there is anything
wrong with claiming mental method steps as part of a
process containing non-mental steps, but rather because
computational methods which can be performed entirely
in the human mind are the types of methods that embody
the basic tools of scientific and technological work that are
free to all men and reserved exclusively to none.

While the Supreme Court has altered the § 101 analysis since
in cases like Mayo and Alice, we continue to treat analyzing
information by steps people go through in their minds, or by math-
ematical algorithms, without more, as essentially mental processes
within the abstract-idea category.

Although the Asserted Claims are devoid of any reference to a
computer or any other physical component, Synopsys suggests that
the ”complexity” of the claimed methods would make it implausible
— if not impossible — for a skilled logic circuit designer to perform the
methods mentally or with pencil and paper.

Synopsys’ argument is belied by the actual claims at issue. Claim
1 recites a method of changing one description of a level sensitive
latch (i.e., a functional description) into another description of the
level sensitive latch (i.e., a hardware component description) by way
of a third description of that very same level sensitive latch (i.e., as-
signment conditions). As demonstrated above and in the patent spec-
ification itself the method can be performed mentally or with pencil
and paper. The skilled artisan must simply analyze a four-line snip-
pet of HDL code and translate this short piece of code into assignment
conditions and further translate those two assignment conditions into
a schematic representation of a level sensitive latch.

Although an understanding of logic circuit design is certainly re-
quired to perform the steps, the limited, straightforward nature of the
steps involved in the claimed method make evident that a skilled ar-
tisan could perform the steps mentally. The inventors of the Gregory
Patents confirmed this point when they admitted to performing the
steps mentally themselves.

Synopsys next argues that even if the Asserted Claims could be
performed mentally they would, in practice, be performed on a com-
puter. In support of this argument, counsel for Synopsys during oral
argument pointed to the 200 pages of code” attached to the speci-
fications of the Gregory Patents that he contended reveal the "true
novelty” of the Asserted Claims.

While Synopsys may be correct that the inventions of the Gregory
Patents were intended to be used in conjunction with computer-based
design tools, the Asserted Claims are not confined to that conception.

l.e., turn Table 8 into Table 9 and then
into Figure 8A

Enfish: 822 F.3d 1327 (Fed. Cir. 2016)

DDR Holdings: 773 F.3d 1245 (Fed. Cir.
2014)

CHAPTER 10. SOFTWARE 28

On their face, the claims do not call for any form of computer im-
plementation of the claimed methods. Because the Asserted Claims
make no mention of employing a computer or any other physical de-
vice, they are so broad as to read on an individual performing the
claimed steps mentally or with pencil and paper.

For this reason, we need not decide whether a computer-
implemented version of the invention would not be ”directed to” an
abstractidea. And, for the same reasons, Synopsys cannot rely on our
decisions in Enfish, LLC v. Microsoft Corp. and @ to support the
patentability of the Asserted Claims. In we held that claims
directed to a specific improvement to the way computers operate to
store and retrieve data were not unpatentably abstract. In we
similarly held that claims that recited a specific asserted improve-
ment in computer animation were not directed to an unpatentable
abstract idea. By their terms and the district court’s unchallenged
constructions, the Asserted Claims do not involve the use of a com-
puter in any way. The Asserted Claims thus cannot be characterized
as an improvement in computer technology.

Synopsys’ argument that ”the asserted claims do not preempt all
conversions” from functional descriptions of logic circuits to hard-
ware component descriptions of logic circuits likewise misses the
mark. While preemption may signal patent ineligible subject matter,
the absence of complete preemption does not demonstrate patent el-
igibility.

We recognize that defining the precise abstract idea of patent
claims in many cases is far from a straightforward exercise. But, here,
the Asserted Claims are drawn to the abstract idea of: translating a
functional description of a logic circuit into a hardware component
description of the logic circuit. As detailed above, this translation is
a mental process.

II. Avrice SteP 2: DO THE ASSERTED CLAIMS INCLUDE AN INVENTIVE
CONCEPT?

Synopsys equates the inventive concept inquiry with novelty and con-
tends that the Asserted Claims contain an inventive concept because
they were not shown to have been anticipated by or obvious over the
prior art. That position misstates the law. A claim for a new abstract
idea is still an abstract idea. The search for a § 101 inventive concept
is thus distinct from demonstrating § 102 novelty.

That being said, the contours of what constitutes an inventive con-
cept are far from precise.

In DDR Holdings, LLC v. Hotels.com, L.P., we held that claims " di-
rected to systems and methods of generating a composite web page
that combines certain visual elements of a "host” website with content
of a third-party merchant” contained the requisite inventive concept.

CHAPTER 10. SOFTWARE 29

We explained that the claims at issue involved a technological solu-
tion that overcame a specific challenge unique to the Internet.

In BASCOM Global Internet Servs., Inc. v. AT&T Mobility LLC, we
likewise held that claims ”directed to filtering content on the Internet”
contained an inventive concept. We recognized that ”the limitations
of the claims, taken individually, recite generic computer, network
and Internet components, none of which is inventive by itself.” We
explained, however, that “an inventive concept can be found in the
non-conventional and non-generic arrangement of known, conven-
tional pieces.” We found that the claims at issue contained just such
an inventive arrangement through “the installation of a filtering tool
at a specific location, remote from the end-users, with customizable
filtering features specific to each end user.” The claimed custom filter
could be located remotely from the user because the invention ex-
ploited the ability of Internet service providers to associate a search
request with a particular individual account. This technical solution
overcame defects in prior art embodiments and elevated an otherwise
abstract idea to a patentable invention.

The Asserted Claims contain no such technical solution. To the
extent the Asserted Claims add anything to the abstract idea, it is
the use of assignment conditions as an intermediate step in the trans-
lation process. But, given that the claims are for a mental process,
assignment conditions, which merely aid in mental translation as op-
posed to computer efficacy, are not an inventive concept that takes
the Asserted Claims beyond their abstract idea. The Asserted Claims
do not introduce a technical advance or improvement. They contain
nothing that amounts to significantly more than a patent upon the
abstract idea itself.

2 Procedures

Williamson v. Citrix Online, LLC
792 F.3d 1339 (Fed. Cir. 2015)

[U.S. Patent No. 6,155,840] describes methods and systems for “dis-
tributed learning” that utilize industry standard computer hard-
ware and software linked by a network to provide a classroom or
auditorium-like metaphor—i.e., a “virtual classroom” environment.
The objective is to connect one or more presenters with geographi-
cally remote audience members. The disclosed inventions purport
to provide “the benefits of classroom interaction without the detri-
mental effects of complicated hardware or software, or the costs and
inconvenience of convening in a separate place.”

There are three main components of the “distributed learning”
system set forth in the ‘840 patent: (1) a presenter computer, (2) audi-

BASCOM: 827 F.3d 1341 (Fed. Cir. 2016)

Are McRQ and Bynopsyd compatible?

https://patents.google.com/patent/US6155840A

CHAPTER 10. SOFTWARE 30

ence member computers, and (3) a distributed learning server. The
distributed learning server implements a “virtual classroom” over a
computer network, such as the Internet, to facilitate communication
and interaction among the presenter and audience members. The pre-
senter computer is used by the presenter to communicate with the
audience members and control information that appears on the audi-
ence member’s computer screen. An audience member’s computer
is used to display the presentation and can be used to communicate
with the presenter and other audience members.
Means-plus-function claiming occurs when a claim term is
drafted in a manner that invokes 35 U.S5.C. § 112, para. 6, which states:

An element in a claim for a combination may be expressed
as a means or step for performing a specified function
without the recital of structure, material, or acts in sup-
port thereof, and such claim shall be construed to cover
the corresponding structure, material, or acts described in
the specification and equivalents thereof.

In enacting this provision, Congress struck a balance in allowing
patentees to express a claim limitation by reciting a function to be
performed rather than by reciting structure for performing that func-
tion, while placing specific constraints on how such a limitation is
to be construed, namely, by restricting the scope of coverage to only
the structure, materials, or acts described in the specification as cor-
responding to the claimed function and equivalents thereof.

We begin with the observation that the claim limitation in ques-
tion is not merely the introductory phrase “distributed learning con-
trol module,” but the entire passage “distributed learning control
module for receiving communications transmitted between the pre-
senter and the audience member computer systems and for relay-
ing the communications to an intended receiving computer system
and for coordinating the operation of the streaming data module.”
This passage, as lengthy as it is, is nonetheless in a format consistent
with traditional means-plus-function claim limitations. It replaces
the term “means” with the term “module” and recites three functions
performed by the “distributed learning control module.”

Having found that the “distributed learning control module” is
subject to application of § 112, para. 6, we next determine whether
the specification discloses sufficient structure that corresponds to the
claimed function. We conclude that it does not.

The district court identified three claimed functions associated
with the “distributed learning control module” term: (1) receiving
communications transmitted between the presenter and the audience
member computer systems; (2) relaying the communications to an
intended receiving computer system; and (3) coordinating the opera-

CHAPTER 10. SOFTWARE 31

tion of the streaming data module. The district court then found that
the specification fails to disclose structure corresponding to the “co-
ordinating” function. On appeal, it is undisputed that the claimed
“coordinating” function is associated with the “distributed learning
control module.” Thus, we must ascertain whether adequate struc-
ture corresponding to this function is disclosed in the specification.

The district court was correct that the specification of the '840
patent fails to disclose corresponding structure. The written descrip-
tion of the ‘840 patent makes clear that the distributed learning con-
trol module cannot be implemented in a general purpose computer,
but instead must be implemented in a special purpose computer — a
general purpose computer programmed to perform particular func-
tions pursuant to instructions from program software. A special pur-
pose computer is required because the distributed learning control
module has specialized functions as outlined in the written descrip-
tion. In cases such as this, involving a claim limitation that is subject
to § 112, para. 6 that must be implemented in a special purpose com-
puter, this court has consistently required that the structure disclosed
in the specification be more than simply a general purpose computer
or microprocessor. We require that the specification disclose an al-
gorithm for performing the claimed function. The algorithm may be
expressed as a mathematical formula, in prose, or as a flow chart, or
in any other manner that provides sufficient structure.

Because the '840 patent fails to disclose any structure correspond-
ing to the “coordinating” function of the “distributed learning con-
trol module,” we affirm the judgment that claims 8-16 are invalid for
indefiniteness.

Mark A. Lemley, Software Patents and the Return of Functional Claiming
2013 Wisc. L. Rev. 905
Functional claiming is back. While experienced patent lawyers today
generally avoid writing their patent claims in means-plus-function
format, software patentees have increasingly been claiming to own
the function of their program, not merely the particular way they
achieved that goal. They have effectively captured ownership not
of what they built, but of anything that achieves the same goal, no
matter how different it is. They claim to own the function itself.
Fortunately, the solution to the problem is correspondingly sim-
ple: we must take seriously the dictate of Section 112(f). If we limit
patent claims that purport to cover functions to the actual structure,
material, or acts the patentee built or described, the result will be that
software patents will cover, not every possible way of implement-
ing a goal, but the way the patentee actually implemented the goal
“and equivalents thereof.” And in computer software, the “struc-
ture” or “acts” that perform the function are not simply “a com-

CHAPTER 10. SOFTWARE 32

puter” or “a client-server system” but “a computer programmed in
a particular way.” That is, the structure of a software patent must
involve software, not just the hardware substrate on which all soft-
ware runs. Specifically, as recent Federal Circuit indefiniteness cases
have shown, patentees will have to disclose the algorithms they use
to achieve particular ends, and the patent will be limited to those al-
gorithms and equivalents thereof. This will leave room for later en-
trants to design around the patent and develop different algorithms
to achieve the same result.

3 Obviousness

Apple Inc. v. Samsung Electronics Co., Ltd.
839 F.3d 1034 (Fed. Cir. 2016)

The jury found claim 8 of [Apple’s] U.S. Patent No. 8,046,721 in-
fringed and not invalid. The district court later denied Samsung’s
requested JMOL and entered judgment accordingly. On February
26, 2016, a panel of this court reversed the denial of JMOL with re-
gard to the jury verdict of non-obviousness as to the 721 patent. We
agree with the district court that the jury’s fact findings supported
the conclusion that claim 8 would have been obvious.

The '721 patent discloses a portable device with a touch-sensitive
display that can be “unlocked via gestures” performed on the screen.
The patent teaches that a “problem associated with using touch
screens on portable devices is the unintentional activation or deactiva-
tion of functions due to unintentional contact with the touch screen.”
“Unintentional activation or deactivation of functions due to unin-
tentional contact with the touch screen” is commonly referred to as

“pocket dialing.” Greg Christie, an inventor of the '721 patent, de-
Device A scribed the problem he and his colleagues set out to solve:
he 404 . We were worried about accidental use, pocket dialing,
&é: the phone getting shut down accidentally, or since we
/ _— were going to have all these features on the phone, like
s02 £ e-mail and messaging, we were worried that, you know,
mail could be sent accidentally or deleted accidentally or
Buton ¢ the phone would answer itself simply because the touch

surface—you know, if it was like, like, the touch surface
against your leg in your pocket, we were worried that just,
like, you know, jostling around, moving around would
trigger things on the screen.

Figure 5B from the '721 patent

slide to unlock The '721 patent also describes the importance of making phone acti-
vation as “user-friendly” and “efficient” as possible. It teaches:

iPhone lock screen Accordingly, there is a need for more efficient, user-

https://patents.google.com/patent/US8046721B2/en

CHAPTER 10. SOFTWARE 33

friendly procedures for unlocking such devices, touch
screens, and/or applications. More generally, there is a
need for more efficient, user-friendly procedures for tran-
sitioning such devices, touch screens, and/or applications
between user interface states (e.g., from a user interface
state for a first application to a user interface state for a
second application, between user interface states in the
same application, or between locked and unlocked states).
In addition, there is a need for sensory feedback to the
user regarding progress towards satisfaction of a user in-
put condition that is required for the transition to occur.

Mr. Christie testified that the ease of the user interface was a central
design consideration when developing the slide to unlock feature:

We thought to introduce some sort of definite gesture. We
knew we wanted to have some instruction. We knew we
wanted the interface to be obvious to the customer. It
would be possibly the first experience even in a retail en-
vironment. They’re deciding whether they want to buy it.
They pick up this iPhone, you know, it would be very bad
if they looked at the phone that they had heard so much
about and they look at it and say “I can’t figure out how
to use this. I don’t know how to unlock it. It's locked.” At
the same time, we knew that people would be unlocking
their phone, you know, tens or hundreds of times a day,
so we didn’t want the instruction to be, you know, insult-
ing or talk down to the customer. We didn’t want it to
be cumbersome, something that they would grow tired of
after a while.

Apple’s expert, Dr. Cockburn, explained that there was a tension be-
tween preventing pocket dialing and ease of use: “It has to work. It
has to succeed in preventing accidental activation by mistake. But yet
it needs to be something that’s easy to do, but not so easy that it can
occur by accident, and it succeeds in that.”

Apple asserted claim 8, which depends from claim 7, against sev-
eral Samsung devices. These claims recite:

7. A portable electronic device, comprising:
a touch-sensitive display;
memory;
one or more processors; and

one or more modules stored in the memory and configured
for execution by the one or more processors, the one or
more modules including instructions:

KEYLOCK - UNLOCKING THE UNIT

The ON/OFF switch is located on the
left side of the N1, below the screen.

1. Press the power button once.
. 2. The text “Right sweep to unlock”
appears on the screen. Sweep right
to unlock your unit.

Neonode N1 Quickstart Guide illustra-

tion

‘o) o

o

Illustration from Plaisant paper

CHAPTER 10. SOFTWARE 34

to detect a contact with the touch-sensitive display at
a first predefined location corresponding to an unlock
image;

to continuously move the unlock image on the touch-
sensitive display in accordance with the movement of
the detected contact while continuous contact with the
touch-sensitive display is maintained, wherein the un-
lock image is a graphical, interactive user-interface ob-
ject with which a user interacts in order to unlock the
device; and

to unlock the hand-held electronic device if the unlock
image is moved from the first predefined location on
the touch screen to a predefined unlock region on the
touch-sensitive display.

8. The device of claim 7, further comprising instructions to display
visual cues to communicate a direction of movement of the un-
lock image required to unlock the device.

Samsung argues claim 8 would have been obvious in light of the com-
bination of Neonode and Plaisant. “Neonode” refers to the Neon-
ode N1 Quickstart Guide. Neonode discloses a mobile device with
a touch-sensitive screen. It explains that a user may unlock the de-
vice by pressing the power button. After the user presses the power
button, text appears instructing the user to “Right sweep to unlock.”
Sweeping right then unlocks the unit.

“Plaisant” refers to a video and corresponding two-page paper
published in 1992 titled “Touchscreen Toggle Design” by Catherine
Plaisant and Daniel Wallace. The authors of the paper conducted an
experiment to determine which controls (“toggles”) users prefer on
wall-mounted controllers for “entertainment, security, and climate
control systems.” These controllers were intended to be installed
“flushmounted into the wall or the cabinetry.” The authors presented
six alternative unlocking mechanisms to a group of fifteen undergrad-
uate students, including a “slider toggle” where a user could activate
the controller by “grab[bing] the pointer and slid[ing] it to the other
side.” The students preferred “toggles that are pushed” over “toggles
that slide,” and generally ranked the slider fifth of the six alternatives.
The paper also notes that sliders “were not preferred,” “sliding is a
more complex task than simply touching,” and that “sliders are more
difficult to implement than buttons.”

On appeal, Apple does not contest that, together, Neonode and
Plaisant disclose all the elements of claim 8. Rather, the parties dis-
pute whether a person of ordinary skill in the art would have been
motivated to combine one of the unlocking mechanisms disclosed in
Plaisant with Neonode. Samsung argues “there was no evidence of

CHAPTER 10. SOFTWARE 35

any kind suggesting that Plaisant’s application to a wall-mounted de-
vice would lead inventors not to combine Plaisant with Neonode.” Its
expert, Dr. Greenberg, testified that a person of ordinary skill “would
be highly interested” in both references because “they both deal with
touch base systems, they both deal with user interfaces.” Dr. Green-
berg testified that “a person looking at this would just think it natural
to combine these two, as well taking the ideas in Plaisant, the slider,
and putting them on the Neonode is, is just a very routine thing to
think about in terms of interaction design.” Samsung points to the
Plaisant reference which states that sliding movement “is less likely
to be done inadvertently.”

Apple counters that a skilled artisan designing a mobile phone
would not have been motivated to turn to a wall-mounted air condi-
tioning controller to solve the pocket dialing problem. Its expert, Dr.
Cockburn, testified that a person of ordinary skill would not have
been naturally motivated to combine Neonode and Dr. Cockburn
testified that the way the Plaisant controllers “were intended to be
used was the touch screen would be mounted into a wall or into cab-
inetry and it would be used to control, for remote control, office or
home appliances, like air conditioning units or heaters.” He also ex-
plained to the jury that Plaisant itself discloses that sliding toggles
were less preferred than the other switches disclosed. Apple points
to Plaisant’s teachings that “sliders were not preferred,” “sliding is
a more complex task,” and “sliders are more difficult to implement.”
Apple argues there was substantial evidence for the jury to conclude
that there would not have been a motivation to combine Plaisant and
Neonode to arrive at the claimed invention.

The district court determined that a reasonable jury could have
found that a person of ordinary skill would not have been motivated
to combine Plaisant and Neonode:

A reasonable jury could infer from [Dr. Cockburn’s] tes-
timony that an ordinary artisan would not have been mo-
tivated to combine elements from a wall-mounted touch-
screen for home appliances and a smartphone, particu-
larly in view of the “pocket dialing” problem specific to
mobile devices that Apple’s invention sought to address.

Additionally, Dr. Cockburn explained that Plaisant “teach[es] away
from the use of sliding,” because it “tells you not to use the sliding
[toggle] mechanism.” We agree with the district court that on this
record, the jury’s implicit fact findings that Plaisant would not have
provided a skilled artisan with a motivation to combine its slider tog-
gle switch with Neonode is supported by substantial evidence. In
addition to the statements in Plaisant, the court explained:

CHAPTER 10. SOFTWARE 36

Dr. Cockburn testified, contrary to Dr. Greenberg, that
a person of ordinary skill in the art would not have been
motivated to combine the Neonode and Plaisant in such
a way as to invent claim 8. He provided two reasons.
First, Plaisant described “toggle designs” intended to be
used with a “touch screen [that] would be mounted into
a wall or into cabinetry” for controlling “office or home
appliances, like air conditioning units or heaters.” A rea-
sonable jury could infer from this testimony that an ordi-
nary artisan would not have been motivated to combine
elements from a wall-mounted touchscreen for home ap-
pliances and a smartphone, particularly in view of the
“pocket dialing” problem specific to mobile devices that
Apple’s invention sought to address.

We agree with the district court’s analysis. Because the jury found the
issue of validity in favor of Apple, we presume it resolved the conflict-
ing expert testimony and found that a skilled artisan would not have
been motivated to combine the slider toggle in Plaisant with the cell
phone disclosed in Neonode. The question for our review is whether
substantial evidence supports this implied fact finding. We conclude
that it does. Neonode discloses a mobile phone. Plaisant discloses
a wall-mounted air conditioning controller. The jury had both ref-
erences before it. Although Samsung presents arguments for com-
bining the two references, these arguments were before the jury. We
agree with the district court: “A reasonable jury could infer from this
testimony that an ordinary artisan would not have been motivated to
combine elements from a wall-mounted touchscreen for home appli-
ances and a smartphone, particularly in view of the ‘pocket dialing’
problem specific to mobile devices that Apple’s invention sought to
address.”

The record includes Plaisant and Neonode and all that these refer-
ences teach, including Plaisant’s reference to inadvertent activation,
complexity, difficult implementability, and that users do not prefer
sliders. Though the prior art references each relate to touchscreens,
the totality of the evidence supports the conclusion that it would not
have been obvious for a skilled artisan, seeking an unlock mechanism
that would be both intuitive to use and solve the pocket dialing prob-
lem for cell phones, to look to a wall-mounted controller for an air con-
ditioner. The two-page Plaisant paper published in 1992 reported the
results of a user-preference survey of fifteen undergraduates on six
different computer-based switches. That a skilled artisan would look
to the Plaisant paper directed to a wall-mounted interface screen for
appliances and then choose the slider toggle, which the study found
rated fifth out of six options in usability, to fulfill a need for an in-

CHAPTER 10. SOFTWARE 37

tuitive unlock mechanism that solves the pocket dialing problem for
cell phones seems far from obvious.

[The en banc court also discussed secondary considerations.
Among other things, it noted:

* Industry praise. — When Steve Jobs unveiled the slide to unlock
feature, the audience burst into cheers.

¢ Copying. — Internal Samsung documents praised the iPhone’s
slide to unlock feature as ”a creative way of solving UI complex-
ity” and concluded that Samsung’s designs would be better if
they were more like the iPhone’s.

* Commercial success. — Apple wanted a vivid easily comprehen-
sible demonstration of how its iPhone touch screens worked to
make customers comfortable with it. Slide to unlock was the
first feature shown in Apple’s first iPhone commercial. These
facts were evidence that the iPhone’s commercial success was
due in part to slide to unlock.

o Long-felt need. — Apple’s experts testified to the deficiencies
of numerous previous “frustrating” solutions to the pocket-
dialing problem, and internal Samsung documents showed that
it had tried four other alternatives and concluded they were all
inferior to slide to unlock.]

C Copyright
Software copyright has been intensely controversial.

1 Subject Matter

Some of the most important software subject-matter holdings arose
in the context of similarity analyses. In order to explain whether the
defendant’s allegedly infringing software, courts must first filter out
the unprotectable aspects of plaintiff’s software. Thus, and
are included here rather in a section on similarity because of
their importance to subsequent caselaw.

Apple Computer, Inc. v. Franklin Computer Corp.
714 F.2d 1240 (3d Cir. 1983)

Apple, one of the computer industry leaders, manufactures and mar-
kets personal computers (microcomputers), related peripheral equip-
ment such as disk drives (peripherals), and computer programs (soft-
ware). It presently manufactures Apple II computers and distributes
over 150 programs. Apple has sold over 400,000 Apple II comput-
ers, employs approximately 3,000 people, and had annual sales of
$335,000,000 for fiscal year 1981.

Franklin ACE 100

17US.C.§102
17US.C.§101

CHAPTER 10. SOFTWARE 38

Programs sold by Franklin in conjunction with its ACE 100 com-
puter were virtually identical with those covered by fourteen Ap-
ple copyrights. The variations that did exist were minor, consisting
merely of such things as deletion of reference to Apple or its copy-
right notice.d Franklin did not dispute that it copied the Apple pro-
grams. Its witness admitted copying each of the works in suit from
the Apple programs.

Franklin’s principal defense is that the Apple operating system
programs are not capable of copyright protection.

A. Copyrightability of a Computer Program Expressed in Object Code

Certain statements by the district court suggest that programs ex-
pressed in object code, as distinguished from source code, may not
be the proper subject of copyright. We find no basis in the statute for
any such concern. The district court here questioned whether copy-
right was to be limited to works designed to be “read” by a human
reader as distinguished from read by an expert with a microscope
and patience. The suggestion that copyrightability depends on a com-
municative function to individuals stems from the early decision of
White-Smith, which held a piano roll was not a copy of the musical
composition because it was not in a form others, except perhaps for
a very expert few, could perceive. However, it is clear from the lan-
guage of the 1976 Act and its legislative history that it was intended
to obliterate distinctions engendered by White-Smith.

Under the statute, copyright extends to works in any tangible
means of expression ”from which they can be perceived, reproduced, or
otherwise communicated, either directly or with the aid of a machine
or device.” Further, the definition of ”“computer program” adopted by
Congress in the 1980 amendments is ”sets of statements or instruc-
tions to be used directly or indirectly in a computer in order to bring
about a certain result.” As source code instructions must be trans-
lated into object code before the computer can act upon them, only
instructions expressed in object code can be used ”directly” by the
computer.

The district court also expressed uncertainty as to whether a com-
puter program in object code could be classified as a ”literary work.”
However, the category of “literary works”, one of the seven copy-
rightable categories, is not confined to literature in the nature of Hem-
ingway’s For Whom the Bell Tolls. The definition of “literary works”
in section 101 includes expression not only in words but also "num-
bers, or other ... numerical symbols or indicia”, thereby expanding

°For example, 8 bytes of memory were altered in the Autostart ROM program
so that when the computer is turned on ”ACE 100” appears on the screen rather
than ”Apple II.” The Franklin DOS 3.3 program also had 16 bytes (out of 9000) that
allowed use of upper and lower case.

CHAPTER 10. SOFTWARE 39

the common usage of "literary works.” Cf. Harcourt, Brace & World,
Inc. v. Graphic Controls Corp. (the symbols designating questions
or response spaces on exam answer sheets held to be copyrightable
“writings” under 1909 Act); Reiss v. National Quotation Bureau, Inc.
(code book of coined words designed for cable use copyrightable).
Thus a computer program, whether in object code or source code, is a
”literary work” and is protected from unauthorized copying, whether
from its object or source code version.

C. Copyrightability of Computer Operating System Programs

We turn to the heart of Franklin’s position on appeal which is that
computer operating system programs, as distinguished from appli-
cation programs, are not the proper subject of copyright. Franklin
argues that an operating system program is either a “process”, ”sys-
tem”, or “method of operation” and hence uncopyrightable.

Franklin’s attack on operating system programs as “methods” or
"processes” seems inconsistent with its concession that application
programs are an appropriate subject of copyright. Both types of pro-
grams instruct the computer to do something. Therefore, it should
make no difference whether these instructions tell the computer to
help prepare an income tax return (the task of an application pro-
gram) or to translate a high level language program from source code
into its binary language object code form (the task of an operating
system program such as ”Applesoft”). Since it is only the instruc-
tions which are protected, a “process” is no more involved because
the instructions in an operating system program may be used to ac-
tivate the operation of the computer than it would be if instructions
were written in ordinary English in a manual which described the
necessary steps to activate an intricate complicated machine. There
is, therefore, no reason to afford any less copyright protection to the
instructions in an operating system program than to the instructions
in an application program.

Franklin’s argument that an operating system program is part of
a machine mistakenly focuses on the physical characteristics of the
instructions. But the medium is not the message. We have already
considered and rejected aspects of this contention in the discussion
of object code and ROM. The mere fact that the operating system pro-
gram may be etched on a ROM does not make the program either a
machine, part of a machine or its equivalent. Furthermore, as one of
Franklin’s witnesses testified, an operating system does not have to
be permanently in the machine in ROM, but it may be on some other
medium, such as a diskette or magnetic tape, where it could be read-
ily transferred into the temporary memory space of the computer. In
fact, some of the operating systems at issue were on diskette.

Harcourt, Brace: 329 F. Supp. 517
(S.D.N.Y. 1971)

Reiss: 276 F. 717 (S.D.N.Y. 1921)

Wait! Is Applesoft an operating system
or an application?

Does this reasoning make the SCPA
pointless? Should conductor mask de-
signs be registered as literary works be-
cause they are equivalent to computer
programs? For that matter, what does
this reasoning suggest about the Fed-
eral Circuit's "new machine" justifica-
tion for software patents?

This description of digital typefaces is
taken from Blake Fry, Why Typefaces

Proliferate Without Copyright Protection,

8 J. Telecomm. & High Tech. L. 425
(2010)

Eltra: 579 F.2d 294 (4th Cir. 1978)

CHAPTER 10. SOFTWARE 40

Adobe Systems Inc. v. Southern Software Inc.
45 U.S.PQ.2d 1827 (ND Cal Feb. 2, 1998)
[Computer outline fonts are a set of points, selected by the font’s de-
signer, describing the outside of a letter. The advantage of outlined
computer fonts is that since only the outline of the letter is described,
a character can be enlarged or shrunk by simply increasing or de-
creasing the distance between the points. For displaying or printing,
software connects these lines, and shades in the letter.]

Computer programs are protectable literary works. Typeface de-
signs are not copyrightable. Eltra Corp. v. Ringer. A computer pro-
gram is not rendered unprotectable merely because its output is not
protectable. Thus, the fact that a computer program produces unpro-
tectable typefaces does not make the computer program itself unpro-
tectable.

In a 1988 Copyright Office Policy Decision, the Copyright Office
determined that digitized typefaces were not copyrightable because
they were not computer programs and required little selection or ar-
rangement beyond that dictated by the uncopyrightable typeface de-
sign. However, in 1992 the Copyright Office issued a final regula-
tion regarding the registrability of “computer programs that generate
typefaces” which appears to back off the 1988 policy decision. The
1992 Regulation states:

The Copyright Office is persuaded that creating scalable
typefonts using already digitized typeface represents a
significant change in the industry since our previous Pol-
icy Decision. We are also persuaded that computer pro-
grams designed for generating typeface in conjunction
with printing devices may involve original computer in-
structions entitled to protection under the Copyright Act.
For example, the creation of scalable font output pro-
grams to produce harmonious fonts consisting of hun-
dreds of characters typically involves many decisions in
drafting the instructions that drive the printer. The ex-
pression of these decisions is neither limited by the un-
protectible shape of the letters nor functionally mandated.
This expression, assuming it meets the usual standard of
authorship, is thus registrable as a computer program.

Defendants state that “merely manipulating an unprotectable font
image to create another, slightly different (but still unprotectable)
font image cannot possibly give rise to protectable expression” De-
fendants assert that no matter what points are selected by the Adobe
editor performing the process, they correspond directly to, and hence
are determined by, the unprotectable font shape. Therefore, because
the output is not protected and there cannot be any creativity in what

CHAPTER 10. SOFTWARE 41

the editor does to obtain the output, nothing is protectable.

The evidence presented shows that there is some creativity in de-
signing the font software programs. While the glyph dictates to a
certain extent what points the editor must choose, it does not dictate
every point that must be chosen. Adobe has shown that font editors
make creative choices as to what points to select based on the image in
front of them on the computer screen. The code is determined directly
from the selection of the points. That some creativity is involved is
illustrated by the fact that two independently working programmers
using the same data and same tools can produce an indistinguishable
output but will have few points in common. Accordingly, the court
finds that the Adobe font software programs are protectable original
works of authorship. Thus, any copying of the points is copying of
literal expression, that is, in essence, copying of the computer code
itself.

Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc.

797 F.2d 1222 (3d Cir. 1986)
[Jaslow, a dental laboratory, hired Whelan, a software development
firm, to develop dental laboratory bookkeeping software called Den-
talab. Whelan kept the copyright; Jaslow marketed the software to
other dental firms and received a 35% commission. One of Jaslow’s
owner/officers allegedly used his access to the Dentalab software to
develop a competing dental-firm bookkeeping program, Dentcom,
which was written in a different programming language: BASIC
rather than EDL.]

The Arnstein ordinary observer test, which was developed in cases
involving novels, plays, and paintings, is of doubtful value in cases in-
volving computer programs on account of the programs’ complexity
and unfamiliarity to most members of the public. We therefore join
the growing number of courts which do not apply the ordinary ob-
server test in copyright cases involving exceptionally difficult mate-
rials, like computer programs, but instead adopt a single substantial
similarity inquiry according to which both lay and expert testimony
would be admissible.

It is well, though recently, established that copyright protection
extends to a program’s source and object codes. In this case, how-
ever, the district court did not find any copying of the source or ob-
ject codes, nor did the plaintiff allege such copying. Rather, the dis-
trict court held that the Dentalab copyright was infringed because the
overall structure of Dentcom was substantially similar to the overall
structure of Dentalab. The question therefore arises whether mere
similarity in the overall structure of programs can be the basis for
a copyright infringement, or, put differently, whether a program’s
copyright protection covers the structure of the program or only the

How are DENTALAB and DENTCOM as
trademarks?

Foxv. MCA: 715 F.2d 1327, 1329 (9th Cir.
1983)

Krofft: 562 F.2d 1157 (9th Cir. 1977)

CHAPTER 10. SOFTWARE 42

program’s literal elements, i.e., its source and object codes.

The copyrights of other literary works can be infringed even when
there is no substantial similarity between the works’ literal elements.
One can violate the copyright of a play or book by copying its plot
or plot devices. See, e.g., Twentieth Century-Fox Film Corp. v. MCA,
Inc. (13 alleged distinctive plot similarities between Battlestar Galac-
tica and Star Wars may be basis for a finding of copyright violation);
Sid & Marty Krofft Television v. McDonald’s Corp. (similarities between
McDonaldland characters and H.R. Pufnstuf characters can be estab-
lished by “total concept and feel” of the two productions. By anal-
ogy to other literary works, it would thus appear that the copyrights
of computer programs can be infringed even absent copying of the
literal elements of the program. Defendants contend, however, that
what is true of other literary works is not true of computer programs.
They assert two principal reasons, which we consider in turn.

Defendants argue that the structure of a computer program is, by
definition, the idea and not the expression of the idea, and therefore
that the structure cannot be protected by the program copyright.

Just as Baker focused on the end sought to be achieved by Selden’s
book, the line between idea and expression may be drawn with ref-
erence to the end sought to be achieved by the work in question. In
other words, the purpose or function of a utilitarian work would be
the work’s idea, and everything that is not necessary to that purpose
or function would be part of the expression of the idea. Where there
are various means of achieving the desired purpose, then the partic-
ular means chosen is not necessary to the purpose; hence, there is
expression, not idea.

Itis clear that the purpose of the utilitarian Dentalab program was
to aid in the business operations of a dental laboratory. It is equally
clear that the structure of the program was not essential to that task:
there are other programs on the market, competitors of Dentalab and
Dentcom, that perform the same functions but have different struc-
tures and designs. The conclusion is thus inescapable that the de-
tailed structure of the Dentalab program is part of the expression, not
the idea, of that program.

Computer Associates Intern., Inc. v. Altai, Inc.
982 F.2d 693 (1992)
The essentially utilitarian nature of a computer program complicates
the task of distilling its idea from its expression. In order to describe
both computational processes and abstract ideas, its content com-
bines creative and technical expression. The variations of expression
found in purely creative compositions, as opposed to those contained
in utilitarian works, are not directed towards practical application.
For example, a narration of Humpty Dumpty’s demise, which would

CHAPTER 10. SOFTWARE 43

clearly be a creative composition, does not serve the same ends as, say,
a recipe for scrambled eggs — which is a more process oriented text.
Thus, compared to aesthetic works, computer programs hover even
more closely to the elusive boundary line described in § 102(b).

To the extent that an accounting text and a computer program are
both a set of statements or instructions to bring about a certain result,
they are roughly analogous. In the former case, the processes are
ultimately conducted by human agency; in the latter, by electronic
means. In either case, as already stated, the processes themselves are
not protectable. But the holding in Baker goes farther. The Court con-
cluded that those aspects of a work, which “must necessarily be used
asincident to” the idea, system or process that the work describes, are
also not copyrightable. Selden’s ledger sheets, therefore, enjoyed no
copyright protection because they were “necessary incidents to” the
system of accounting that he described. From this reasoning, we con-
clude that those elements of a computer program that are necessarily
incidental to its function are similarly unprotectable.

We think that ’s approach to separating idea from expres-
sion in computer programs relies too heavily on metaphysical dis-
tinctions and does not place enough emphasis on practical consider-
ations.

We think that district courts would be well-advised to undertake
a three-step procedure in order to determine whether the non-literal
elements of two or more computer programs are substantially simi-
lar. This approach breaks no new ground; rather, it draws on such
familiar copyright doctrines as merger, scenes a faire, and public do-
main.

In ascertaining substantial similarity under this approach, a court
would first break down the allegedly infringed program into its con-
stituent structural parts. Then, by examining each of these parts for
such things as incorporated ideas, expression that is necessarily in-
cidental to those ideas, and elements that are taken from the public
domain, a court would then be able to sift out all non-protectable ma-
terial. Left with a kernel, or possible kernels, of creative expression
after following this process of elimination, the court’s last step would
be to compare this material with the structure of an allegedly infring-
ing program. The result of this comparison will determine whether
the protectable elements of the programs at issue are substantially
similar so as to warrant a finding of infringement.

Step One: Abstraction

As applied to computer programs, the abstractions test will comprise
the first step in the examination for substantial similarity. Initially, in
a manner that resembles reverse engineering on a theoretical plane,
a court should dissect the allegedly copied program’s structure and

Steven R. Englund, Note, Idea, Pro-
cess, or Protected Expression?: Determin-
ing the Scope of Copyright Protection of
the Structure of Computer Programs, 88
Mich. L. Rev. 866 (1990)

CHAPTER 10. SOFTWARE 44

isolate each level of abstraction contained within it. This process be-
gins with the code and ends with an articulation of the program’s
ultimate function. As an anatomical guide to this procedure, the fol-
lowing description is helpful:

At the lowest level of abstraction, a computer program
may be thought of in its entirety as a set of individual
instructions organized into a hierarchy of modules. At a
higher level of abstraction, the instructions in the lowest-
level modules may be replaced conceptually by the func-
tions of those modules. At progressively higher levels
of abstraction, the functions of higher-level modules con-
ceptually replace the implementations of those modules
in terms of lower-level modules and instructions, until fi-
nally, one is left with nothing but the ultimate function of
the program. A program has structure at every level of
abstraction at which it is viewed. At low levels of abstrac-
tion, a program’s structure may be quite complex; at the
highest level it is trivial.

Step Two: Filtration

Once the program’s abstraction levels have been discovered, the sub-
stantial similarity inquiry moves from the conceptual to the concrete.
We endorse, a successive filtering method for separating protectable
expression from non-protectable material. This process entails exam-
ining the structural components at each level of abstraction to deter-
mine whether their particular inclusion at that level was ”idea” or
was dictated by considerations of efficiency, so as to be necessarily
incidental to that idea; required by factors external to the program
itself; or taken from the public domain and hence is nonprotectable
expression. The structure of any given program may reflect some, all,
or none of these considerations.

Strictly speaking, this filtration serves the purpose of defining the
scope of plaintiff’s copyright. By applying well developed doctrines
of copyright law, it may ultimately leave behind a core of protectable
material. Further explication of this second step may be helpful.

(a) Elements Dictated by Efficiency

In the context of computer program design, the concept of efficiency
is akin to deriving the most concise logical proof or formulating the
most succinct mathematical computation. Thus, the more efficient
a set of modules are, the more closely they approximate the idea or
process embodied in that particular aspect of the program’s structure.

While, hypothetically, there might be a myriad of ways in which
a programmer may effectuate certain functions within a program, —

CHAPTER 10. SOFTWARE 45

i.e., express the idea embodied in a given subroutine — efficiency con-
cerns may so narrow the practical range of choice as to make only one
or two forms of expression workable options. Of course, not all pro-
gram structure is informed by efficiency concerns. It follows that in
order to determine whether the merger doctrine precludes copyright
protection to an aspect of a program’s structure that is so oriented, a
court must inquire whether the use of this particular set of modules is
necessary efficiently to implement that part of the program’s process
being implemented. If the answer is yes, then the expression repre-
sented by the programmer’s choice of a specific module or group of
modules has merged with their underlying idea and is unprotected.

Efficiency is an industry-wide goal. Since, as we have already
noted, there may be only a limited number of efficient implementa-
tions for any given program task, it is quite possible that multiple pro-
grammers, working independently, will design the identical method
employed in the allegedly infringed work. Of course, if this is the
case, there is no copyright infringement.

(b) Elements Dictated By External Factors

In many instances it is virtually impossible to write a program to per-
form particular functions in a specific computing environment with-
out employing standard techniques. This is a result of the fact that a
programmer’s freedom of design choice is often circumscribed by ex-
trinsic considerations such as (1) the mechanical specifications of the
computer on which a particular program is intended to run; (2) com-
patibility requirements of other programs with which a program is
designed to operate in conjunction; (3) computer manufacturers’” de-
sign standards; (4) demands of the industry being serviced; and (5)
widely accepted programming practices within the computer indus-
try.

The district court in Q-Co Industries, Inc. v. Hoffman rested its hold-
ing on what, perhaps, most closely approximates a traditional scenes
a faire rationale. There, the court denied copyright protection to four
program modules employed in a teleprompter program. This deci-
sion was ultimately based upon the court’s finding that “the same
modules would be an inherent part of any prompting program.”

(c) Elements taken From the Public Domain

Material found in the public domain is free for the taking and can-
not be appropriated by a single author even though it is included in
a copyrighted work. We see no reason to make an exception to this
rule for elements of a computer program that have entered the pub-
lic domain by virtue of freely accessible program exchanges and the
like. Thus, a court must also filter out this material from the allegedly
infringed program before it makes the final inquiry in its substantial

Q-Co: 625 F. Supp. 608 (S.D.N.Y. 1985)

CHAPTER 10. SOFTWARE 46

similarity analysis.
Step Three: Comparison

The third and final step of the test for substantial similarity that we be-
lieve appropriate for non-literal program components entails a com-
parison. Once a court has sifted out all elements of the allegedly in-
fringed program which are “ideas” or are dictated by efficiency or
external factors, or taken from the public domain, there may remain
a core of protectable expression. In terms of a work’s copyright value,
this is the golden nugget. At this point, the court’s substantial simi-
larity inquiry focuses on whether the defendant copied any aspect of
this protected expression, as well as an assessment of the copied por-
tion’s relative importance with respect to the plaintiff’s overall pro-
gram.

Evidentiary Analysis

The district court took the first step in the analysis set forth in this
opinion when it separated the program by levels of abstraction. The
district court stated:

As applied to computer software programs, this abstrac-
tions test would progress in order of “increasing general-
ity” from object code, to source code, to parameter lists,
to services required, to general outline. In discussing the
particular similarities, therefore, we shall focus on these
levels.

Moving to the district court’s evaluation of OSCAR 3.5’s structural
components, we agree with Judge Pratt’s systematic exclusion of non-
protectable expression. With respect to code, the district court ob-
served that after the rewrite of OSCAR 3.4 to OSCAR 3.5, “there re-
mained virtually no lines of code that were identical to ADAPTER.”
Accordingly, the court found that the code ”present[ed] no similarity
at all.”

Next, Judge Pratt addressed the issue of similarity between the
two programs’ parameter lists and macros. He concluded that, view-
ing the conflicting evidence most favorably to CA, it demonstrated
that “only a few of the lists and macros were similar to protected el-
ements in ADAPTER; the others were either in the public domain or
dictated by the functional demands of the program.” As discussed
above, functional elements and elements taken from the public do-
main do not qualify for copyright protection. With respect to the few
remaining parameter lists and macros, the district court could rea-
sonably conclude that they did not warrant a finding of infringement
given their relative contribution to the overall program. In any event,

CHAPTER 10. SOFTWARE 47

the district court reasonably found that, for lack of persuasive evi-
dence, CA failed to meet its burden of proof on whether the macros
and parameter lists at issue were substantially similar.

The district court also found that the overlap exhibited between
the list of services required for both ADAPTER and OSCAR 3.5 was
”determined by the demands of the operating system and of the appli-
cations program to which it was to be linked through ADAPTER or
OSCAR” In other words, this aspect of the program’s structure was
dictated by the nature of other programs with which it was designed
to interact and, thus, is not protected by copyright.

Finally, in his infringement analysis, Judge Pratt accorded no
weight to the similarities between the two programs’ organizational
charts, “because the charts were so simple and obvious to anyone ex-
posed to the operation of the programs.” CA argues that the district
court’s action in this regard ”is not consistent with copyright law” —
that “obvious” expression is protected, and that the district court er-
roneously failed to realize this. However, to say that elements of a
work are “obvious,” in the manner in which the district court used
the word, is to say that they “follow naturally from the work’s theme
rather than from the author’s creativity.” This is but one formulation
of the scenes a faire doctrine, which we have already

Oracle America, Inc. v. Google Inc.
872 F. Supp. 2d 974 (N.D. Cal. 2012)

This action was the first of the so-called ”smartphone war” cases tried
to a jury. This order includes the findings of fact and conclusions of
law on a central question tried simultaneously to the judge, namely
the extent to which, if at all, certain replicated elements of the struc-
ture, sequence and organization of the Java application programming
interface are protected by copyright.

Sun Microsystems, Inc. (”Sun”) developed the Java ”platform” for
computer programming and released it in 19961 The aim was to re-
lieve programmers from the burden of writing different versions of
their computer programs for different operating systems or devices.
The Java platform, through the use of a virtual machine, enabled soft-
ware developers to write programs that were able to run on different
types of computer hardware without having to rewrite them for each
different type. With Java, a software programmer could “write once,
run anywhere.”

The Java virtual machine ("JVM”) plays a central role in the over-
all Java platform. The Java programming language itself — which in-
cludes words, symbols, and other units, together with syntax rules
for using them to create instructions — is the language in which a Java

!Oracle acquired Sun in 2010.

The facts here are drawn primarily from
the Court of Appeals' opinion, which
immediately follows.

CHAPTER 10. SOFTWARE 48

programmer writes source code, the version of a program that is in a
human-readable language. For the instructions to be executed, they
must be converted (or compiled) into binary machine code (object
code) consisting of Os and Is understandable by the particular com-
puting device. In the Java system, source code is first converted into
"bytecode,” an intermediate form, before it is then converted into
binary machine code by the Java virtual machine that has been de-
signed for that device.

Sun wrote a number of ready-to-use Java programs to perform
common computer functions and organized those programs into
groups it called "packages.” These packages, which are the applica-
tion programming interfaces at issue in this appeal, allow program-
mers to use the prewritten code to build certain functions into their
own programs, rather than write their own code to perform those
functions from scratch. They are shortcuts. Sun called the code for
a specific operation (function) a “method.” It defined ”classes” so
that each class consists of specified methods plus variables and other
elements on which the methods operate. To organize the classes
for users, then, it grouped classes (along with certain related “inter-
faces”) into “packages.” The parties have not disputed the district
court’s analogy: Oracle’s collection of API packages is like a library,
each package is like a bookshelf in the library, each class is like a book
on the shelf, and each method is like a how-to chapter in a book.

The original Java Standard Edition Platform (”Java SE”) included
eight packages of pre-written programs. The district court found,
and Oracle concedes to some extent, that three of those packages —
java.lang.java.io, and java.util — were “core” packages, meaning that
programmers using the Java language had to use them in order to
make any worthwhile use of the language. By 2008, the Java plat-
form had more than 6,000 methods making up more than 600 classes
grouped into 166 API packages. There are 37 Java API packages at
issue in this appeal, three of which are the core packages identified
by the district court. These packages contain thousands of individual
elements, including classes, subclasses, methods, and interfaces.

Every package consists of two types of source code — what the
parties call (1) declaring code; and (2) implementing code. Declaring
code is the expression that identifies the prewritten function and is
sometimes referred to as the “declaration” or “header.” As the dis-
trict court explained, the “main point is that this header line of code
introduces the method body and specifies very precisely the inputs,
name and other functionality.” The expressions used by the program-
mer from the declaring code command the computer to execute the
associated implementing code, which gives the computer the step-by-
step instructions for carrying out the declared function.

For example, one of the Java API packages at issue is “java. lang.”

CHAPTER 10. SOFTWARE 49

Within that package is a class called “math,” and within “math” there
are several methods, including one that is designed to find the larger
of two numbers: “max.” To invoke this method from another pro-
gram (or class), the following call could be included in the program:

int a = java.lang.Math.max (2, 3);

Upon reaching this statement, the computer would go and find the
max method under the Math class in the java.lang package, input 2
and ‘3" as arguments, and then return a ’3,” which would then be set
as the value of 'a.” The declaration for the “max” method, as defined
for integers, is

public static int max (int x, int y) {

The word "public” means that other programs can call on it. (If this
instead says “private,” then it can only be accessed by other methods
inside the same class.) The word ”static” means that the method can
be invoked without creating an instance of the class. (If this instead
is an instance method, then it would always be invoked with respect
to an object.) The word ”int” means that an integer is returned by
the method. (Other alternatives are "boolean,” ”char,” and ”String”
which respectively mean ”true/false,” “single character,” and ”char-
acter string.”) Each of these three parameters is drawn from a short
menu of possibilities, each possibility corresponding to a very spe-
cific functionality. The word “max” is a name and any name (other
than a reserved word [i.e, a few names like “int” and “public” that
have specific and rigidly defined roles in the Java language]) could
have been used.. The phrase ”(int x, int y)” identifies the arguments
that must be passed into the method, stating that they will be in in-
teger form. The "x” and the ”y” could be “a” and ”b” or “argl” and
"arg2,” so there is a degree of creativity in naming the arguments.
Finally, ”{” is the beginning marker that tells the compiler that the
method body is about to follow. The marker is mandatory.
Although Oracle owns the copyright on Java SE and the API pack-
ages, it offers three different licenses to those who want to make use
of them. The first is the General Public License, which is free of
charge and provides that the licensee can use the packages — both
the declaring and implementing code — but must ”contribute back”
its innovations to the public. This arrangement is referred to as an
”open source” license. The second option is the Specification License,
which provides that the licensee can use the declaring code and or-
ganization of Oracle’s API packages but must write its own imple-
menting code. The third option is the Commercial License, which is
for businesses that want to use and customize the full Java code in
their commercial products and keep their code secret. Oracle offers

CHAPTER 10. SOFTWARE 50

the Commercial License in exchange for royalties. To maintain Java’s
“write once, run anywhere” motto, the Specification and Commercial
Licenses require that the licensees’ programs pass certain tests to en-
sure compatibility with the Java platform.

The accused product is Android, a software platform that was
designed for mobile devices and competes with Java in that market.
Google acquired Android, Inc. in 2005 as part of a plan to develop
a smartphone platform. Later that same year, Google and Sun be-
gan discussing the possibility of Google taking a license to use and
to adapt the entire Java platform for mobile devices. They also dis-
cussed a possible co-development partnership deal with Sun under
which Java technology would become an open-source part of the An-
droid platform, adapted for mobile devices. The parties negotiated
for months but were unable to reach an agreement. The point of
contention between the parties was Google’s refusal to make the im-
plementation of its programs compatible with the Java virtual ma-
chine or interoperable with other Java programs. Because Sun/Oracle
found that position to be anathema to the “write once, run anywhere”
philosophy, it did not grant Google a license to use the Java API pack-
ages.

When the parties’ negotiations reached an impasse, Google de-
cided to use the Java programming language to design its own vir-
tual machine — the Dalvik virtual machine ("Dalvik VM”) — and "to
write its own implementations for the functions in the Java API that
were key to mobile devices.” Google developed the Android plat-
form, which grew to include 168 API packages — 37 of which corre-
spond to the Java API packages at issue in this appeal.

With respect to the 37 packages at issue, ”Google believed Java ap-
plication programmers would want to find the same 37 sets of func-
tionalities in the new Android system callable by the same names
as used in Java.” To achieve this result, Google copied the declaring
source code from the 37 Java API packages verbatim, inserting that
code into parts of its Android software. In doing so, Google copied
the elaborately organized taxonomy of all the names of methods,
classes, interfaces, and packages — the ”"overall system of organized
names — covering 37 packages, with over six hundred classes, with
over six thousand methods. The parties and district court referred to
this taxonomy of expressions as the ”structure, sequence, and organi-
zation” or “SSO” of the 37 packages. It is undisputed, however, that
Google wrote its own implementing code [with some exceptions not
here relevant].

Google released the Android platform in 2007, and the first An-
droid phones went on sale the following year. Oracle indicated at
oral argument that Android phones contain copies of the accused por-
tions of the Android software. Android smartphones rapidly grew in

CHAPTER 10. SOFTWARE 51

popularity and now comprise a large share of the United States mar-
ket. Google provides the Android platform free of charge to smart-
phone manufacturers and receives revenue when customers use par-
ticular functions on the Android phone. Although Android uses the
Java programming language, it is undisputed that Android is not
generally Java compatible. As Oracle explains, “Google ultimately
designed Android to be incompatible with the Java platform, so that
apps written for one will not work on the other.”

AprPrPLICATION OF CONTROLLING LAW TO CONTROLLING FAcCTs

All agree that everyone was and remains free to program in the Java
language itself. All agree that Google was free to use the Java lan-
guage to write its own APIL. While Google took care to provide fresh
line-by-line implementations (the 97 percent), it generally replicated
the overall name organization and functionality of 37 packages in
the Java API (the three percent). The main issue addressed herein
is whether this violated the Copyright Act and more fundamentally
whether the replicated elements were copyrightable in the first place.

This leads to the first holding central to this order and it concerns
the method level. Aslong as the specific code written to implement a
method is different, anyone is free under the Copyright Act to write
his or her own method to carry out exactly the same function or spec-
ification of any and all methods used in the Java API. Contrary to Or-
acle, copyright law does not confer ownership over any and all ways
to implement a function or specification, no matter how creative the
copyrighted implementation or specification may be. The Act con-
fers ownership only over the specific way in which the author wrote
out his version. Others are free to write their own implementation to
accomplish the identical function, for, importantly, ideas, concepts
and functions cannot be monopolized by copyright.

To return to our example, one method in the Java API carries out
the function of comparing two numbers and returning the greater.
Google — and everyone else in the world — was and remains free to
write its own code to carry out the identical function so long as the
implementing code in the method body is different from the copy-
righted implementation. This is a simple example, but even if a
method resembles higher mathematics, everyone is still free to try
their hand at writing a different implementation, meaning that they
are free to use the same inputs to derive the same outputs so long as
the implementation in between is their own.

Much of Oracle’s evidence at trial went to show that the design
of methods in an API was a creative endeavor. Of course, that is
true. Inventing a new method to deliver a new output can be cre-
ative, even inventive, including the choices of inputs needed and out-
puts returned. But such inventions — at the concept and functionality

Wait. Why is everyone free to program
in Java? Is everyone free to program in
Java?

CHAPTER 10. SOFTWARE 52

level — are protectable only under the Patent Act. Under the Copy-
right Act, no matter how creative or imaginative a Java method spec-
ification may be, the entire world is entitled to use the same method
specification (inputs, outputs, parameters) so long as the line-by-line
implementations are different. To repeat the Second Circuit’s phras-
ing, “there might be a myriad of ways in which a programmer may
express the idea embodied in a given subroutine.” The method
specification is the idea. The method implementation is the expression.
No one may monopolize the idea.

To carry out any given function, the method specification as set
forth in the declaration must be identical under the Java rules (save
only for the choices of argument names). Any other declaration
would carry out some other function. The declaration requires pre-
cision. Significantly, when there is only one way to write something,
the merger doctrine bars anyone from claiming exclusive copyright
ownership of that expression. Therefore, there can be no copyright
violation in using the identical declarations. Nor can there be any
copyright violation due to the name given to the method (or to the
arguments), for under the law, names and short phrases cannot be
copyrighted.

In sum, Google and the public were and remain free to write their
own implementations to carry out exactly the same functions of all
methods in question, using exactly the same method specifications
and names. Therefore, at the method level — the level where the heavy
liftting is done — Google has violated no copyright, it being undis-
puted that Google’s implementations are different.

* % %

Even so, the second major copyright question is whether Google was
and remains free to group its methods in the same way as in Java,
that is, to organize its Android methods under the same class and
package scheme as in Java. For example, the Math classes in both
systems have a method that returns a cosine, another method that re-
turns the larger of two numbers, and yet another method that returns
logarithmic values, and so on. As Oracle notes, the rules of Java did
not insist that these methods be grouped together in any particular
class. Google could have placed its trigonometric function (or any
other function) under a class other than Math class. Oracle is entirely
correct that the rules of the Java language did not require that the
same grouping pattern (or even that they be grouped at all, for each
method could have been placed in a stand-alone class). There was
nothing in the rules of the Java language that required that Google
replicate the same groupings even if Google was free to replicate the
same functionality.

CHAPTER 10. SOFTWARE 53

The main answer to this argument is that the overall scheme of
file name organization is also a command structure for a system or
method of operation of the application programming interface. The
commands are (and must be) in the form

java.package.Class.method()

and each calls into action a pre-assigned function.

That a system or method of operation has thousands of com-
mands arranged in a creative taxonomy does not change its character
as a method of operation. Yes, it is creative. Yes, it is original. But it
is nevertheless a command structure, a system or method of opera-
tion — a long hierarchy of over six thousand commands to carry out
pre-assigned functions. For that reason, it cannot receive copyright
protection.

% % %

Interoperability sheds further light on the character of the command
structure as a system or method of operation. Surely, millions of lines
of code had been written in Java before Android arrived. These pro-
grams necessarily used the java.package.Class.method() command
format. These programs called on all or some of the specific 37 pack-
ages at issue and necessarily used the command structure of names
at issue. Such code was owned by the developers themselves, not by
Oracle. In order for at least some of this code to run on Android, Google was
required to provide the same java.package.Class.method() command system
using the same names with the same “taxonomy” and with the same func-
tional specifications. Google replicated what was necessary to achieve
a degree of interoperability — but no more, taking care, as said before,
to provide its own implementations.

That interoperability is at the heart of the command structure is
illustrated by Oracle’s preoccupation with what it calls “fragmen-
tation,” meaning the problem of having imperfect interoperability
among platforms. When this occurs, Java-based applications may not
run on the incompatible platforms. For example, Java-based code us-
ing the replicated parts of the 37 API packages will run on Android
but will not if a 38th package is needed. Such imperfect interoperabil-
ity leads to a “fragmentation” — a Balkanization — of platforms, a cir-
cumstance which Sun and Oracle have tried to curb via their licensing
programs. In this litigation, Oracle has made much of this problem,
at times almost leaving the impression that if only Google had repli-
cated all 166 Java API packages, Oracle would not have sued. While
fragmentation is a legitimate business consideration, it begs the ques-
tion whether or not a license was required in the first place to replicate
some or all of the command structure. (This is especially so inasmuch

Why the Federal Circuit? Because the

case originally included patent claims,
giving the Federal Circuit appellate ju-

risdiction. Note that the Federal Circuit

here is technically applying Ninth Cir-

cuit law.

Atari: 975 F. 2d 832 (Fed. Cir. 1992)

CHAPTER 10. SOFTWARE 54

as Android has not carried the Java trademark, and Google has not
held out Android as fully compatible.) The immediate point is this:
fragmentation, imperfect interoperability, and Oracle’s angst over it
illustrate the character of the command structure as a functional sys-
tem or method of operation.

Oracle America, Inc. v. Google Inc.

750 F.3d 1339 (Fed. Cir. 2014)
We are mindful that the application of copyright law in the computer
context is often a difficult task. On this record, however, we find that
the district court failed to distinguish between the threshold question
of what is copyrightable — which presents a low bar — and the scope
of conduct that constitutes infringing activity. The court also erred
by importing fair use principles, including interoperability concerns,
into its copyrightability analysis. For the reasons that follow, we con-
clude that the declaring code and the structure, sequence, and orga-
nization of the 37 Java API packages are entitled to copyright protec-
tion.

1. Declaring Source Code

Under the merger doctrine, a court will not protect a copyrighted
work from infringement if the idea contained therein can be ex-
pressed in only one way. For computer programs, this means that
when specific parts of the code, even though previously copyrighted,
are the only and essential means of accomplishing a given task, their
later use by another will not amount to infringement.

In Atari Games Corp. v. Nintendo of America Inc., for example,
Nintendo designed a program — the 10NES — to prevent its video
game system from accepting unauthorized game cartridges. Nin-
tendo ”chose arbitrary programming instructions and arranged them
in a unique sequence to create a purely arbitrary data stream” which
”serves as the key to unlock the NES.” Because Nintendo produced
expert testimony “showing a multitude of different ways to generate
a data stream which unlocks the NES console,” we concluded that
Nintendo’s specific choice of code did not merge with the process.

The evidence showed that Oracle had unlimited options as to the
selection and arrangement of the 7000 lines Google copied. Using the
district court’s “java.lang. Math.max” example, Oracle explains that
the developers could have called it any number of things, including
“Math.maximum” or ”Arith.larger.” This was not a situation where
Oracle was selecting among preordained names and phrases to cre-
ate its packages. As the district court recognized, moreover, “the An-
droid method and class names could have been different from the
names of their counterparts in Java and still have worked.” Because
alternative expressions were available, there is no merger.

CHAPTER 10. SOFTWARE 55

We further find that the district court erred in focusing its merger
analysis on the options available to Google at the time of copying. It
is well-established that copyrightability and the scope of protectable
activity are to be evaluated at the time of creation, not at the time of in-
fringement. The focus is, therefore, on the options that were available
to Sun/Oracle at the time it created the API packages. Of course, once
Sun/Oracle created ”java.lang.Math.max,” programmers who want
touse that particular package have to call it by that name. But nothing
prevented Google from writing its own declaring code, along with its
own implementing code, to achieve the same result. In such circum-
stances, the chosen expression simply does not merge with the idea
being expressed.ﬁ

The district court is correct that words and short phrases such
as names, titles, and slogans are not subject to copyright protection.
The court failed to recognize, however, that the relevant question for
copyrightability purposes is not whether the work at issue contains
short phrases — as literary works often do —but, rather, whether those
phrases are creative. And, by dissecting the individual lines of declar-
ing code at issue into short phrases, the district court further failed
to recognize that an original combination of elements can be copy-
rightable.

By analogy, the opening of Charles Dickens” A Tale of Two Cities is

nothing but a string of short phrases. Yet no one could contend that
this portion of Dickens” work is unworthy of copyright protection
because it can be broken into those shorter constituent components.
The question is not whether a short phrase or series of short phrases
can be extracted from the work, but whether the manner in which
they are used or strung together exhibits creativity.

Although the district court apparently focused on individual lines
of code, Oracle is not seeking copyright protection for a specific short
phrase or word. Instead, the portion of declaring code at issue is
7,000 lines, and Google’s own “Java guru” conceded that there can
be ”creativity and artistry even in a single method declaration.” Be-
cause Oracle exercised creativity in the selection and arrangement of
the method declarations when it created the API packages and wrote
the relevant declaring code, they contain protectable expression that
is entitled to copyright protection.

2. The Structure, Sequence, and Organization of the API Packages

The district court found that the SSO of the Java API packages is cre-
ative and original, but nevertheless held that it is a system or method

"The district court did not find merger with respect to the structure, sequence,
and organization of Oracle’s Java API packages. Nor could it, given the court’s
recognition that there were myriad ways in which the API packages could have
been organized.

"It was the best of times, it was the
worst of times, it was the age of wis-
dom, it was the age of foolishness, it
was the epoch of belief, it was the
epoch of incredulity, it was the season
of Light, it was the season of Darkness,
it was the spring of hope, it was the
winter of despair, we had everything
before us, we had nothing before us,
we were all going direct to Heaven, we
were all going direct the other way --
in short, the period was so far like the
present period, that some of its noisi-
est authorities insisted on its being re-
ceived, for good or for evil, in the su-
perlative degree of comparison only."
Charles Dickens, A Tale of Two Cities

"Mr. Burns: This is a thousand mon-
keys working at a thousand typewriters.
Soon, they'll have written the greatest
novel known to man. Let's see. ... 'lt was
the best of times, it was the blurst of
times!" You stupid monkey!" The Simp-
sons, "Last Exit to Springfield" (episode
9F15).

Lotus: 49 F.3d 807 (1st Cir. 1995), aff'd
without opinion by equally divided court,
516 U.S. 233 (1996)

CHAPTER 10. SOFTWARE 56

of operation and, therefore, cannot be copyrighted. In reaching this
conclusion, the district court seems to have relied upon language con-
tained in a First Circuit decision, Lotus Development Corp. v. Borland
International, Inc..

In it was undisputed that the defendant copied the menu
command hierarchy and interface from Lotus 1-2-3, a computer
spreadsheet program that enables users to perform accounting func-
tions electronically on a computer. The menu command hierarchy re-
ferred to a series of commands — such as ”"Copy,” “Print,” and ”Quit”
— which were arranged into more than 50 menus and submenus. Al-
though the defendant did not copy any Lotus source code, it copied
the menu command hierarchy into its rival program. The question
before the court was whether a computer menu command hierarchy
is copyrightable subject matter.

Although it accepted the district court’s finding that Lotus devel-
opers made some expressive choices in selecting and arranging the
command terms, the First Circuit found that the command hierarchy
was not copyrightable because, among other things, it was a “method
of operation” under Section 102(b). In reaching this conclusion, the
court defined a “method of operation” as “the means by which a per-
son operates something, whether it be a car, a food processor, or a
computer.” Because the Lotus menu command hierarchy provided
”the means by which users control and operate Lotus 1-2-3,” it was
deemed unprotectable. For example, if users wanted to copy mate-
rial, they would use the “Copy” command and the command terms
would tell the computer what to do. According to the Lotus court, the
”fact that Lotus developers could have designed the Lotus menu com-
mand hierarchy differently is immaterial to the question of whether it
is a ‘method of operation.” The court further indicated that, ”[i]f spe-
cific words are essential to operating something, then they are part of
a ‘method of operation” and, as such, are unprotectable.”

On appeal, Oracle argues that the district court’s reliance on
is misplaced because it is distinguishable on its facts and is inconsis-
tent with Ninth Circuit law. We agree. First, while the defendant in
Lotus did not copy any of the underlying code, Google concedes that
it copied portions of Oracle’s declaring source code verbatim. Sec-
ond, the court found that the commands at issue there (copy,
print, etc.) were not creative, but it is undisputed here that the declar-
ing code and the structure and organization of the API packages are
both creative and original. Finally, while the court in found
the commands at issue were ”essential to operating” the system, it is
undisputed that — other than perhaps as to the three core packages —
Google did not need to copy the structure, sequence, and organiza-
tion of the Java API packages to write programs in the Java language.

More importantly, however, the Ninth Circuit hasnot adopted the

CHAPTER 10. SOFTWARE 57

court’s “method of operation” reasoning in and we conclude
that it is inconsistent with binding precedent. Specifically, we find
that is inconsistent with Ninth Circuit case law recognizing that
the structure, sequence, and organization of a computer program is
eligible for copyright protection where it qualifies as an expression
of an idea, rather than the idea itself. We find, moreover, that the
hard and fast rule set down in and employed by the district
court here — i.e., that elements which perform a function can never
be copyrightable — is at odds with the Ninth Circuit’s endorsement
of the abstraction-filtration-comparison analysis.

Here, the district court recognized that the SSO “resembles a tax-
onomy,” but found that ”it is nevertheless a command structure,
a system or method of operation — a long hierarchy of over six
thousand commands to carry out pre-assigned functions.”%2 In other
words, the court concluded that, although the SSO is expressive, it is
not copyrightable because it is also functional. The problem with the
district court’s approach is that computer programs are by definition
functional - they are all designed to accomplish some task. If we were
to accept the district court’s suggestion that a computer program is
uncopyrightable simply because it ”carr[ies] out pre-assigned func-
tions,” no computer program is protectable. That result contradicts
Congress’s express intent to provide copyright protection to com-
puter programs, as well as binding Ninth Circuit case law finding
computer programs copyrightable, despite their utilitarian or func-
tional purpose.

On appeal, Oracle does not — and concedes that it cannot — claim
copyright in the idea of organizing functions of a computer program
or in the "package-class-method” organizational structure in the ab-
stract. Instead, Oracle claims copyright protection only in its particu-
lar way of naming and organizing each of the 37 Java API packages.
Oracle recognizes, for example, that it “cannot copyright the idea of
programs that open an internet connection,” but ”it can copyright the
precise strings of code used to do so, at least so long as other language
is available to achieve the same function.” Thus, Oracle concedes that
Google and others could employ the Java language — much like any-
one could employ the English language to write a paragraph without
violating the copyrights of other English language writers. And, that
Google may employ the ”package-class-method” structure much like
authors can employ the same rules of grammar chosen by other au-
thors without fear of infringement. What Oracle contends is that, be-
yond that point, Google, like any author, is not permitted to employ
the precise phrasing or precise structure chosen by Oracle to flesh

12This analogy by the district court is meaningful because taxonomies, in varying
forms, have generally been deemed copyrightable. See, e.g., Practice Management

Connectix: 203 F.3d 596 (9th Cir. 2000)

CHAPTER 10. SOFTWARE 58

out the substance of its packages — the details and arrangement of
the prose.

3. Google’s Interoperability Arguments are Irrelevant to Copyrightability

Oracle also argues that the district court erred in invoking interop-
erability in its copyrightability analysis. Specifically, Oracle argues
that Google’s interoperability arguments are only relevant, if at all, to
fair use — not to the question of whether the API packages are copy-
rightable. We agree.

The district court characterized and Sony Computer En-
tertainment v. Connectix Corp. as ”close analogies” to this case. Ac-
cording to the court, both decisions “held that interface procedures
that were necessary to duplicate in order to achieve interoperability
were functional aspects not copyrightable under Section 102(b).” The
district court’s reliance on Eccolade. and in the copyrighta-
bility context is misplaced, however. Both cases were focused on fair
use, not copyrightability. In for example, the only question
was whether Accolade’s intermediate copying was fair use. The court
never addressed the question of whether Sega’s software code, which
had functional elements, also contained separable creative expression
entitled to protection.

This is not a case where Google reverse-engineered Oracle’s Java
packages to gain access to unprotected functional elements contained
therein. Had Google reverse engineered the programming packages
to figure out the ideas and functionality of the original, and then cre-
ated its own structure and its own literal code, Oracle would have no
remedy under copyright whatsoever. Instead, Google chose to copy
both the declaring code and the overall SSO of the 37 Java API pack-
ages at issue.

We disagree with Google’s suggestion thatAccoladd and [Connectin]
created an “interoperability exception” to copyrightability. Because
copyrightability is focused on the choices available to the plaintiff at
the time the computer program was created, the relevant compati-
bility inquiry asks whether the plaintiff’s choices were dictated by
a need to ensure that its program worked with existing third-party
programs. Whether a defendant later seeks to make its program inter-
operable with the plaintiff's program has no bearing on whether the
software the plaintiff created had any design limitations dictated by
external factors. Stated differently, the focus is on the compatibility
needs and programming choices of the party claiming copyright pro-
tection — not the choices the defendant made to achieve compatibility
with the plaintiff’s program. Consistent with this approach, courts
have recognized that, once the plaintiff creates a copyrightable work,
a defendant’s desire “to achieve total compatibility... is a commer-
cial and competitive objective which does not enter into the ... issue

CHAPTER 10. SOFTWARE 59

of whether particular ideas and expressions have merged.”
_ankli ‘

Whether Google’s software is ”“interoperable” in some sense with
any aspect of the Java platform (although as Google concedes, cer-
tainly not with the JVM) has no bearing on the threshold question of
whether Oracle’s software is copyrightable. It is the interoperability
and other needs of Oracle — not those of Google — that apply in the
copyrightability context, and there is no evidence that when Oracle
created the Java API packages at issue it did so to meet compatibility
requirements of other pre-existing programs.

Google maintains on appeal that its use of the “Java class and
method names and declarations was ‘the only and essential means’ of
achieving a degree of interoperability with existing programs written
in the Java language.” Indeed, given the record evidence that Google
designed Android so that it would not be compatible with the Java
platform, or the JVM specifically, we find Google’s interoperability
argument confusing. While Google repeatedly cites to the district
court’s finding that Google had to copy the packages so that an app
written in Java could run on Android, it cites to no evidence in the
record that any such app exists and points to no Java apps that ei-
ther pre-dated or post-dated Android that could run on the Android
platform. The compatibility Google sought to foster was not with Or-
acle’s Java platform or with the JVM central to that platform. Instead,
Google wanted to capitalize on the fact that software developers were
already trained and experienced in using the Java API packages at is-
sue. Google’s interest was in accelerating its development process
by leveraging Java for its existing base of developers. Although this
competitive objective might be relevant to the fair use inquiry, we con-
clude that it is irrelevant to the copyrightability of Oracle’s declaring
code and organization of the API packages.

Finally, to the extent Google suggests that it was entitled to copy
the Java API packages because they had become the effective indus-
try standard, we are unpersuaded. Google cites no authority for its
suggestion that copyrighted works lose protection when they become
popular, and we have found none. In fact, the Ninth Circuit has re-
jected the argument that a work that later becomes the industry stan-
dard is uncopyrightable. See Practice Management. Info. Corp. v. Am.
Med. Ass'n (noting that the district court found plaintiff’s medical
coding system entitled to copyright protection, and that, although
the system had become the industry standard, plaintiff’'s copyright
did not prevent competitors “from developing comparative or bet-
ter coding systems and lobbying the federal government and private
actors to adopt them. It simply prevents wholesale copying of an ex-
isting system.”). Google was free to develop its own API packages
and to lobby programmers to adopt them. Instead, it chose to copy

Practice Management:
(9th Cir. 1997)

121 F3d 516,

Based on Tetris Holding, LLC v. Xio Inter-
active, Inc., 863 F. Supp. 2d 394 (D.N.J.
2012) and Spry Fox LLC v. LOLApps Inc.,

104 U.S.PQ.2d 1299 (W. D. Wash 2012)

17U.S.C.§117

Limitations on exclusive rights: Com-

puter programs

CHAPTER 10. SOFTWARE 60

Oracle’s declaring code and the SSO to capitalize on the preexisting
community of programmers who were accustomed to using the Java
API packages. That desire has nothing to do with copyrightability.
For these reasons, we find that Google’s industry standard argument
has no bearing on the copyrightability of Oracle’s work.

[On remand, the jury found that Google’s copying was a fair use.
The District Court declined to set aside the verdict. The case is now
on appeal again on a variety of grounds.]

Tetris Problem

Your client, Thoth Software, would like to create and sell a version
of Tetris for the Digix gaming console. What aspects of the game can
Thoth imitate without fear of liability? The name? Falling blocks?
The shapes of the blocks? Their colors? Lines that disappear when
completely filled in? The music? The graphics around the play field?

2 Defenses

When in 1980 Congress confirmed that software was copyrightable
as a literary work, it rewrote Section 117 to codify a kind of limited
exhaustion rule for software. shows that the courts have also
used fair use to create a fairly robust reverse engineering defense to
software copyright. Although it arises in the DMCA context,
shows how the courts have applied the First Amendment to software
copyright.

Copyright Act

(@) Making of Additional Copy or Adaptation by Owner of Copy. -
Notwithstanding the provisions of section 106, it is not an in-
fringement for the owner of a copy of a computer program to
make or authorize the making of another copy or adaptation of
that computer program provided:

(1) that such a new copy or adaptation is created as an essen-
tial step in the utilization of the computer program in con-
junction with a machine and that it is used in no other man-
ner, or

(2) that such new copy or adaptation is for archival purposes
only and that all archival copies are destroyed in the
event that continued possession of the computer program
should cease to be rightful.

(b) Lease, Sale, or Other Transfer of Additional Copy or Adaptation. —
Any exact copies prepared in accordance with the provisions of
this section may be leased, sold, or otherwise transferred, along

CHAPTER 10. SOFTWARE 61

with the copy from which such copies were prepared, only as
part of the lease, sale, or other transfer of all rights in the pro-
gram. Adaptations so prepared may be transferred only with
the authorization of the copyright owner.

(c) Machine Maintenance or Repair. — Notwithstanding the provi-
sions of section 106, it is not an infringement for the owner or
lessee of a machine to make or authorize the making of a copy
of a computer program if such copy is made solely by virtue
of the activation of a machine that lawfully contains an autho-
rized copy of the computer program, for purposes only of main-
tenance or repair of that machine, if —

(1) suchnew copy is used in no other manner and is destroyed
immediately after the maintenance or repair is completed;
and

(2) with respect to any computer program or part thereof that
is not necessary for that machine to be activated, such pro-
gram or part thereof is not accessed or used other than to
make such new copy by virtue of the activation of the ma-
chine.

Sega Enterprises Ltd. v. Accolade, Inc.
977 F.2d 1510 (9th Cir. 1992)

Sega develops and market video entertainment systems, including
the ”"Genesis” console and video game cartridges. Sega licenses its
copyrighted computer code and its "SEGA” trademark to a num-
ber of independent developers of computer game software. Those
licensees develop and sell Genesis-compatible video games in com-
petition with Sega. Accolade is not and never has been a licensee of
Sega.

Accolade reverse engineered Sega’s video game programs in or-
der to discover the requirements for compatibility with the Genesis
console. As part of the reverse engineering process, Accolade trans-
formed the machine-readable object code contained in Sega’s game
cartridges into human-readable source code using a process called
”disassembly” or ”decornpilation”E Accolade purchased a Genesis
console and three Sega game cartridges, wired a decompiler into
the console circuitry, and generated printouts of the resulting source
code. Accolade engineers studied and annotated the printouts in or-
der toidentify areas of commonality among the three game programs.
They then loaded the disassembled code back into a computer, and
experimented to discover the interface specifications for the Gene-

2Disassembly devices are commercially available and are widely used within
the software industry.

Sega Genesis console

What about cases like and
Filvacd, which asserted that reverse en-
gineering object code was impossible?

r
r
r
r
r
r

D A e o |
D A e o |
D A o [|
D i o [o |

4WAYS -0
HEL
POUCH

HEERRREER
EBBBREEEERRE

-
EBBRREEEBEEEE

Ishido screenshot

CHAPTER 10. SOFTWARE 62

sis console by modifying the programs and studying the results. At
the end of the reverse engineering process, Accolade created a devel-
opment manual that incorporated the information it had discovered
about the requirements for a Genesis-compatible game. The manual
contained only functional descriptions of the interface requirements
and did not include any of Sega’s code.

[In creating its own games for the Genesis, Accolade] did not copy
Sega’s programs, but relied only on the information concerning inter-
face specifications for the Genesis that was contained in its develop-
ment manual. With the exception of the interface specifications, none
of the code in Accolade’s games is derived in any way from its exam-
ination of Sega’s code. In 1990, Accolade released ”Ishido”, a game
which it had originally developed and released for use with the Mac-
intosh and IBM personal computer systems, for use with the Genesis
console.

Accolade contends that its disassembly of copyrighted object code
as a necessary step in its examination of the unprotected ideas and
functional concepts embodied in the code is a fair use. Because, in
the case before us, disassembly is the only means of gaining access
to those unprotected aspects of the program, and because Accolade
has a legitimate interest in gaining such access (in order to determine
how to make its cartridges compatible with the Genesis console), we
agree with Accolade. Where there is good reason for studying or ex-
amining the unprotected aspects of a copyrighted computer program,
disassembly for purposes of such study or examination constitutes a
fair use.

There is no evidence in the record that Accolade sought to avoid
performing its own creative work. Indeed, most of the games that
Accolade released for use with the Genesis console were originally
developed for other hardware systems.

Accolade copied Sega’s software solely in order to discover the
functional requirements for compatibility with the Genesis console
— aspects of Sega’s programs that are not protected by copyright.
To the extent that there are many possible ways of accomplishing
a given task or fulfilling a particular market demand, the program-
mer’s choice of program structure and design may be highly creative
and idiosyncratic. However, computer programs are, in essence, util-
itarian articles — articles that accomplish tasks. As such, they contain
many logical, structural, and visual display elements that are dictated
by the function to be performed, by considerations of efficiency, or by
external factors such as compatibility requirements and industry de-
mands.

Sega argues that even if many elements of its video game pro-
grams are properly characterized as functional and therefore not pro-
tected by copyright, Accolade copied protected expression. Sega is

CHAPTER 10. SOFTWARE 63

correct. The record makes clear that disassembly is wholesale copy-
ing. Because computer programs are also unique among copyrighted
works in the form in which they are distributed for public use, how-
ever, Sega’s observation does not bring us much closer to a resolution
of the dispute.

The unprotected aspects of most functional works are readily ac-
cessible to the human eye. The systems described in accounting
textbooks or the basic structural concepts embodied in architectural
plans, to give two examples, can be easily copied without also copy-
ing any of the protected, expressive aspects of the original works.
Computer programs, however, are typically distributed for public
use in object code form, embedded in a silicon chip or on a floppy
disk. For that reason, humans often cannot gain access to the unpro-
tected ideas and functional concepts contained in object code without
disassembling that code —i.e., making copies. If disassembly of copy-
righted object code is per se an unfair use, the owner of the copyright
gains a de facto monopoly over the functional aspects of his work —
aspects that were expressly denied copyright protection by Congress.

Universal City Studios, Inc. v. Corley
273 F.3d 429 (2001)
Our case concerns a security device, CSS computer code, that pre-
vents access by unauthorized persons to DVD movies. The CSS code
is embedded in the DVD movie. Access to the movie cannot be ob-
tained unless a person has a device, a licensed DVD player, equipped
with computer code capable of decrypting the CSS encryption code.
In its basic function, CSS is like a lock on a homeowner’s door, a com-
bination of a safe, or a security device attached to a store’s products.

DeCSS is computer code that can decrypt CSS. In its basic function,
itis like a skeleton key that can open alocked door, a combination that
can open a safe, or a device that can neutralize the security device
attached to a store’s products. DeCSS enables anyone to gain access
to a DVD movie without using a DVD player.

The initial use of DeCSS to gain access to a DVD movie creates no
loss to movie producers because the initial user must purchase the
DVD. However, once the DVD is purchased, DeCSS enables the ini-
tial user to copy the movie in digital form and transmit it instantly
in virtually limitless quantity, thereby depriving the movie producer
of sales. The advent of the Internet creates the potential for instanta-
neous worldwide distribution of the copied material.

[The District Court found that DeCSS was a “technology” that was
“primarily designed” to circumvent CSS in violation of § 1201(a)(2)
of the DMCA. It enjoined the defendant-appellants from posting the
DeCSS code to the Internet.]

The District Court noted in a foot-
note, "Professor Touretzky of Carnegie
Mellon University convincingly demon-
strated that computer source and ob-
ject code convey the same ideas as
various other modes of expression, in-
cluding spoken language descriptions
of the algorithm embodied in the
code. He drew from this the conclu-
sion that the preliminary injunction ir-
rationally distinguished between the
code, which was enjoined, and other
modes of expression that convey the
same idea, which were not,, although
of course he had no reason to be aware
that the injunction drew that line only
because that was the limit of the re-
lief plaintiffs sought. With commend-
able candor, he readily admitted that
the implication of his view that the spo-
ken language and computer code ver-
sions were substantially similar was not
necessarily that the preliminary injunc-
tion was too broad; rather, the logic of
his position was that it was either too
broad or too narrow. Once again, the
question of a substantially broader in-
junction need not be addressed here,
as plaintiffs have not sought broader re-
lief"

CHAPTER 10. SOFTWARE 64

At first glance, one might think that Congress has as much au-
thority to regulate the distribution of computer code to decrypt DVD
movies as it has to regulate distribution of skeleton keys, combina-
tions to safes, or devices to neutralize store product security devices.
However, despite the evident legitimacy of protection against unau-
thorized access to DVD movies, just like any other property, regula-
tion of decryption code like DeCSS is challenged in this case because
DeCSS differs from a skeleton key in one important respect: it not
only is capable of performing the function of unlocking the encrypted
DVD movie, it also is a form of communication, albeit written in a lan-
guage not understood by the general public. As a communication,
the DeCSS code has a claim to being “speech,” and as ”speech,” it
has a claim to being protected by the First Amendment.

Computer programs are not exempted from the category of First
Amendment speech simply because their instructions require use of
a computer. A recipe is no less “speech” because it calls for the use
of an oven, and a musical score is no less “speech” because it speci-
fies performance on an electric guitar. Arguably distinguishing com-
puter programs from conventional language instructions is the fact
that programs are executable on a computer. But the fact that a pro-
gram has the capacity to direct the functioning of a computer does not
mean that it lacks the additional capacity to convey information, and
it is the conveying of information that renders instructions ”speech”
for purposes of the First Amendment. The information conveyed by
most ”“instructions” is how to perform a task.

The Appellants vigorously reject the idea that computer code can
be regulated according to any different standard than that applicable
to pure speech, i.e., speech that lacks a nonspeech component. Al-
though recognizing that code is a series of instructions to a computer,
they argue that code is no different, for First Amendment purposes,
than blueprints that instruct an engineer or recipes that instruct a
cook. We disagree. Unlike a blueprint or a recipe, which cannot yield
any functional result without human comprehension of its content,
human decision-making, and human action, computer code can in-
stantly cause a computer to accomplish tasks and instantly render
the results of those tasks available throughout the world via the In-
ternet. The only human action required to achieve these results can
be as limited and instantaneous as a single click of a mouse. These
realities of what code is and what its normal functions are require a
First Amendment analysis that treats code as combining nonspeech
and speech elements, i.e., functional and expressive elements.

We recognize that the functional capability of computer code can-
not yield a result until a human being decides to insert the disk con-
taining the code into a computer and causes it to perform its function
(or programs a computer to cause the code to perform its function).

CHAPTER 10. SOFTWARE 65

Nevertheless, this momentary intercession of human action does not
diminish the nonspeech component of code, nor render code entirely
speech, like a blueprint or a recipe.

Neither the DMCA nor the posting prohibition is concerned with
whatever capacity DeCSS might have for conveying information to
a human being, and that capacity, as previously explained, is what
arguably creates a speech component of the decryption code. The
DMCA and the posting prohibition are applied to DeCSS solely be-
cause of its capacity to instruct a computer to decrypt CSS. That func-
tional capability is not speech within the meaning of the First Amend-
ment. The Government seeks to justify both the application of the
DMCA and the posting prohibition to the Appellants solely on the
basis of the functional capability of DeCSS to instruct a computer to
decrypt CSS, i.e., without reference to the content of the regulated
speech. This type of regulation is therefore content-neutral, just as
would be a restriction on trafficking in skeleton keys identified be-
cause of their capacity to unlock jail cells, even though some of the
keys happened to bear a slogan or other legend that qualified as a
speech component.

As a content-neutral regulation with an incidental effect on a
speech component, the regulation must serve a substantial govern-
mental interest, the interest must be unrelated to the suppression of
free expression, and the incidental restriction on speech must not bur-
den substantially more speech than is necessary to further that inter-
est. The Government’s interest in preventing unauthorized access to
encrypted copyrighted material is unquestionably substantial, and
the regulation of DeCSS by the posting prohibition plainly serves that
interest. Moreover, that interest is unrelated to the suppression of
free expression.

Posting DeCSS on the Appellants” web site makes it instantly
available at the click of a mouse to any person in the world with access
to the Internet, and such person can then instantly transmit DeCSS
to anyone else with Internet access. Although the prohibition on
posting prevents the Appellants from conveying to others the speech
component of DeCSS, the Appellants have not suggested, much less
shown, any technique for barring them from making this instanta-
neous worldwide distribution of a decryption code that makes a
lesser restriction on the code’s speech component.

D Trademark

While trademark and trade dress law are excellent for protecting
trademarks for software, they don’t do particularly well protecting
software qua software.

Apple's '983 trade dress registration

CHAPTER 10. SOFTWARE 66

Apple Inc. v. Samsung Electronics Co., Ltd.
786 F.3d 983 (Fed. Cir. 2015)

Apple sued Samsung in April 2011. On August 24, 2012, the first jury
reached a verdict that numerous Samsung smartphones infringed
and diluted Apple’s patents and trade dresses in various combina-
tions. The diluted trade dresses are Trademark Registration No.
3,470,983 and an unregistered trade dress defined in terms of certain
elements in the configuration of the iPhone.

The "983 trade dress is a federally registered trademark. The 983
trade dress claims the design details in each of the sixteen icons on the
iPhone’s home screen framed by the iPhone’s rounded-rectangular
shape with silver edges and a black background:

The first icon depicts the letters “SMS” in green inside a
white speech bubble on a green background; ...

the seventh icon depicts a map with yellow and orange
roads, a pin with a red head, and a red-and-blue road sign
with the numeral ”280” in white; ...

the sixteenth icon depicts the distinctive configuration of
applicant’s media player device in white over an orange
background.

It is clear that individual elements claimed by the "983 trade dress
are functional. For example, there is no dispute that the claimed de-
tails such as ”the seventh icon depicts a map with yellow and orange
roads, a pin with a red head, and a red-and-blue road sign with the
numeral ‘280" in white” are functional. Apple’s user interface expert
testified on how icon designs promote usability. This expert agreed
that “the whole point of an icon on a smartphone is to communicate
to the consumer using that product, that if they hit that icon, certain
functionality will occur on the phone.” The expert further explained
that icons are ”visual shorthand for something” and that “rectangu-
lar containers” for icons provide “more real estate” to accommodate
the icon design. Apple rebuts none of this evidence.

Apple contends instead that Samsung improperly disaggregates
the "983 trade dress into individual elements to argue functionality.
But Apple fails to explain how the total combination of the sixteen
icon designs in the context of iPhone’s screen-dominated rounded-
rectangular shape — all part of the iPhone’s “easy to use” design
theme — somehow negates the undisputed usability function of the
individual elements. Apple’s own brief even relies on its expert’s
testimony about the ”“instant recognizability due to highly intuitive
icon usage” on ”the home screen of the iPhone.” Apple’s expert was
discussing an analysis of the iPhone’s overall combination of icon de-
signs that allowed a user to recognize quickly particular applications
to use. The iPhone’s usability advantage from the combination of

https://trademarks.justia.com/773/03/sms-77303282.html

CHAPTER 10. SOFTWARE 67

its icon designs shows that the '983 trade dress viewed as a whole
”s nothing other than the assemblage of functional parts. There is
no separate overall appearance which is non-functional. The undis-
puted facts thus demonstrate the functionality of the "983 trade dress.

E Design Patent

The Apple-Samsung smartphone litigation has put design patents
on the map in a big way. We saw in the previous chapter that
they provided a natural solution to the problem of protecting three-
dimensional designs. How well do they fit software, and what as-
pects of software might they cover?

Michael Risch, Functionality and Graphical User Interface Design Patents
17 Stan. Tech. Rev. 53 (2013)

Today, design patents cover only images displayed on a screen. As
many claims are written, merely viewing an image on a blog page
or in a PDF file associated with this Article (which includes some
patented images) would constitute infringement. From a theoretical
point of view, something seems off about that: viewing an image on
a display screen can hardly be considered an article of manufacture,
yet the law outlaws precisely such use, even if one is simply viewing the
patent itself on a computer!

Thus, the second threshold question is whether an ephemeral im-
age, viewable anywhere and in any context, can be considered an
“article of manufacture” under the statute. The guidelines, issued in
1996, give surprisingly little attention to this question. Courts have
long held that “surface ornamentation” constitutes an article of man-
ufacture, and displayed images are part of a surface. Thus, the guide-
lines only ask whether the image is part of a display, not whether an
ephemeral image is they type of thing that should ever be protected.

Even if one accepts that copyrightable works should be protected
by design patent, this does not mean that all copyrightable expres-
sion qualifies for patent protection. Consider, for example, protec-
tion of structure, sequence, and organization of factual information.
This may well be protected by copyright, but does not fall under the
design patent umbrella.

Protection of user interfaces essentially merges the copyright
law’s fixation requirement with patent law’s “article of manufacture”
requirement. Fixation is the cornerstone of copyright: no work can
be protected if it is not fixed in a tangible medium. But fixation is
far from permanent; loading a file into computer memory is suffi-
ciently fixed, even if the computer could be turned off or the memory
changed.

Zahn: 617 F.2d 261 (C.C.PA. 1980)

CHAPTER 10. SOFTWARE 68

The question, then, is whether any image present in computer
memory — fixed, to be sure — becomes an “article of manufacture,”
even if it is not displayed on the screen at all times. Thus far, the PTO
has said yes, and courts have not asked the question, assuming that if
a patent is issued, then it must be an article of manufacture. Indeed,
design patents now protect “animations,” which are a series of im-
ages that move in sequence, such as a spinning icon or a simulated
folding of a page to emulate a book on a display screen.

Protection of displays appears to rest on two seminal cases issued
by that Court of Customs & Patent Appeals, the precursor to the Fed-
eral Circuit. The first case is Hruby, which held that the shape of water
moving in a fountain could be a patented design, even though the wa-
ter was moving and could be turned off. The second precedent is In
re Zahn in which the C.C.P.A. ruled that a portion of a manufacture
could be separated by a “broken line” to separate the new, protectable
design from the preexisting remainder of the article. Though the no-
tion that a portion of an article could be patented is more than 140
years old, the Zahn court’s broken line rule leads to the near ubiquity
of broken lines in graphical displays that separate the image from the
rest of the display.

Despite the apparent reasonableness of Hruby and Zahn with re-
spect to the facts of those cases, their extension to user interfaces is
troubling. Courts and commentators have simply not asked the dif-
ficult questions. Collapsing fixation, animation, and display screen
into an “article of manufacture” leaves design patents on a very slip-
pery slope.

For example, there is no theoretical bar to protecting every dis-
played copyrightable work with a design patent. Every television
show and movie is theoretically a novel and non-obvious design
to be incorporated into display screens everywhere. Indeed, every
photograph captured and displayed on every mobile device might
be protected. Every doodle on an electronic Etch-a-Sketch could be
patented. Any use of the material would be infringing, without any
consideration of fair use, the ideas represented by the work, or even
the First Amendment.

Further, and perhaps more unsettling, the only apparent reason
why such claims have not been made before is that nobody thought
to do so, because there is no body of law to avoid such an outcome.
The PTO has almost no tools to reject small, or even large, snippets
of movies. While only a single inventive design may be covered by a
patent, multiple patents might be filed on different—but important—
segments of audiovisual works, sufficient to block all downstream
use with no fair use defense. A design patent protecting four or five
screen captures from the famous Hitler Downfall movie scene would
eliminate all claims to fair use of that short but endlessly entertaining

CHAPTER 10. SOFTWARE 69

parody clip. The PTO has no track record of rigorously examining
images to determine whether they are novel or obvious. Evenifit did,
the exact combination of images in that screen is unlikely to appear
elsewhere.

This parade of horribles might be solved in two ways. First, courts
could recognize that an article of manufacture (or portion thereof)
requires more than copyright fixation. Instead, an article of man-
ufacture requires permanence at the point of manufacture, display,
and use. To be sure, many elements might be hidden at one point
or another, such as bottoms of drawers, collapsible devices, folding
elements that become hidden, or even water fountains. But each of
these examples is different in kind from the ephemeral images on a
display screen. Ephemeral images can be configured by moving bits
in memory, and as such, they are not ornamental articles of manufac-
ture; instead, they are displays of information. In short, the PTO’s
1996 concern about patenting images was well founded, but the solu-
tion was not to add “on a display screen” to patent claims. Instead,
the solution was to recognize that images divorced from manufac-
ture do not qualify as articles — they can be shown on any article, any
screen, and any device, and that is not what design patents are meant
to protect.

A second solution might recognize that modern commercial prod-
ucts live under a big tent. As such, there may be times when the
design of the product includes designs on the screen. However, pro-
tection for displayed surface designs should be limited in a number
of ways to ensure that the design is an ornamental article of manufac-
ture, rather than an ephemeral image.

Smartphone Problem
Here are Figure 1 from Design Patent 604,305 (left), assigned to Apple,
and a picture of the Samsung Galaxy S (right). Does the Galaxy S
infringe the "305 pagent?

Based on Apple Inc. v. Samsung Elec-
tronics Co., Ltd., 786 F.3d 983 (Fed. Cir.
2015)

https://patents.google.com/patent/USD604305S1/en

CHAPTER 10. SOFTWARE

70

AMSUNG
I, cull @99 1:28 AM

Calculator Calendar Camera

;_‘ﬂl >
o)

E-book Email

Gmail Internet

C F

Phone Cantacts

	Software
	Trade Secret

	Barr-Mullin, Inc. v. Browning
	Silvaco Data Systems v. Intel Corp.
	Patent
	Subject Matter
	Then

	In re Bernhart
	In re Alappat
	State Street Bank & Trust Co. v. Signature Financial Group
	Now

	Alice Corp. v. CLS Bank Int'l
	McRO, Inc. v. Bandai Namco Games America Inc.
	Synopsys, Inc. v. Mentor Graphics Corp.
	Procedures

	Williamson v. Citrix Online, LLC
	Mark A. Lemley, Software Patents and the Return of Functional Claiming
	Obviousness

	Apple Inc. v. Samsung Electronics Co., Ltd.
	Copyright
	Subject Matter

	Apple Computer, Inc. v. Franklin Computer Corp.
	Adobe Systems Inc. v. Southern Software Inc.
	Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc.
	Computer Associates Intern., Inc. v. Altai, Inc.
	Oracle America, Inc. v. Google Inc.
	Oracle America, Inc. v. Google Inc.
	Tetris Problem
	Defenses

	Copyright Act § 117
	Sega Enterprises Ltd. v. Accolade, Inc.
	Universal City Studios, Inc. v. Corley
	Trademark

	Apple Inc. v. Samsung Electronics Co., Ltd.
	Design Patent

	Michael Risch, Functionality and Graphical User Interface Design Patents
	Smartphone Problem

